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Global Positioning System (GPS) has proven to be an accurate positioning
sensor.  However, it is associated with several sources of error such as
ionosphere and troposphere effects, satellite time errors, errors of orbit data,
receiver’s errors, and errors resulting from multi-path effect which reduce the
accuracy of low-cost GPS receivers. These sources of error also limit the use of
single-frequency GPS receivers due to their less accurate data. Therefore, it’s
important to reduce the effect of errors on GPS systems. In order to cope with
these errors and enhance GPS system’s accuracy, Differential GPS (DGPS)
method can be used. The problem with this method is slow updating process
of differential corrections. In this paper, three algorithms based on Kalman
Filtering (KF') are proposed to predict real-time corrections of DGPS systems.
The efficiency of the proposed algorithms is verified on the basis of actual data.
The experimental results obtained in field tests gaurantee the high potential of
these methods to get accurate positioning data. The results show that KF with
variable transition matriz is better than other methods; so it’s possible to reduce
the Root Mean Square (RMS) of positioning errors in low-cost GPS receivers

to less than one meter.

INTRODUCTION

GPS is a navigation and positioning satellite system
which is comprised of a network of at least 24 satel-
lites. The satellites are continuously in contact with
specially designated ground-based stations and their
position in orbital constellation is always known. Using
messages received from a minimum of four satellites,
a GPS receiver is able to determine user’s absolute
position anywhere on the earth’s surface. Doing various
measurements, the receiver calculates time, velocity,
distance between user and destination, (longitude,
latitude, and altitude), time of sunrise and sunset,
local time, etc. which are finally shown to the user [1].
During different phases of signals transmission, receipt,
and their analysis in GPS systems, various errors will
affect the whole procedure [2].
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The purpose of this paper is to present three
algorithms based on Kalman Filter (KF) in order to
predict Differential GPS (DGPS) corrections. This
paper is organized as follows. At first, the sources of
error in GPS systems and DGPS, the process of design
and implementation of KF-based estimators will be
discussed. Then, the adopted data collection method
and the experimental test analyses, carried out on the
collected actual data, are reported. Conclusions are
presented in the last section.

SOURCES OF ERROR IN GPS
Categorization of the significant sources of error in
GPS systems is usually based on their type and main
characteristics as well as the researcher’s point of view.
Therefore, there would be various categorizations due
to the constant sources of error and their different
level of importance for the researchers. Generally, the
sources of error are categorized into three main groups
as follows [3]:

a. Errors related to satellites (caused by satellite
clock and geometry),
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b. Propagation errors (caused by ionosphere and
troposphere effects),

c. Errors related to the receiver equipment
(caused by the applied technology in GPS receivers).
In the following section, these sources of errors will be
discussed further.

Satellite Clock Errors

In order to control the different functions carried out
by a satellite, a number of clocks are utilized. One
of the functions, under the control of the satellite
clocks, is generating GPS satellite signals. To increase
the reliability and possibility of substitution, in each
satellite, two rubidium and two cesium clocks are used.
These clocks are corrected and adjusted every day by
the GPS control segment. It should be mentioned that
the errors caused by these clocks, working for 24 hours,
is equal to 17 [nsec] or 5 [m] in length [4].

Errors in Satellite’s Astrological Data

GPS signals contain a Pseudo Random Code (PRC),
a segment for satellite’s orbital position information
(ephemeric), and another segment for calendar data
(almanac). The PRC contains satellite’s identification
information and determines which satellite is trans-
mitting the signal. Satellite position errors occur
because the above-mentioned information gets updated
continuously. In order to prevent these errors, they
should get corrected during the defined time intervals.
In other words, there are some differences between the
actual satellite position and their predicted position.
Ideally, satellites are positioned on very precise orbits
in the space. However, in reality, there would be some
changes in ephemeris data.

Tonospheric Layer Errors

While we study sources of error in GPS systems, we
are always faced with a concept called ionosphere
effect. Tonosphere is a shell of electrons and electrically
charged atoms and molecules that surrounds the earth,
stretching from a height of about 50 kilometers to more
than 1,000 kilometers. In fact, the energy from the
sun’s radiations impinges on the atoms and molecules
in the upper atmosphere, breaks some of the bonds that
hold electrons to atoms or ionizes atoms and molecules.
The result of ionization is a large number of free,
negatively-charged, electrons and positively-charged
atoms and molecules called ions. Therefore, this layer
of atmosphere is called ionosphere. The ionization
degree varies in different heights of ionosphere layer.
Free electrons in ionosphere layer can cause errors in
GPS signals in proportion to the user’s position. These
errors usually cause two primary effects on a GPS
signal. The first causes errors with refracting and
diffracting the signal’s path. The second causes delays
on the signal which is sent from the satellite to the
receiver [5].
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Multi-Path Effect Errors

The multi-path effect happens when GPS signals sent
by a satellite are received by a receiver in various ways
and following different paths because they are reflected
by surrounding terrain: buildings, canyon walls, hard
ground, etc. As a result, the signals are delayed and
it takes them more time to reach the receiver than the
direct signals.

GPS Receiver Errors

The GPS receiver specific errors are mainly classified
into receiver clock errors, the noise affecting the re-
ceiver, satellite selection algorithm errors, and errors
caused by calculation algorithms.

Selective Availability
Selective Availability (SA) is a deliberate error which
reduces the potential for GPS signal to be used in
hostilities toward the USA and its allies. The SA’s
most important feature is its being independent from
different satellites. At first, the amount of error
affecting receivers was set to 500 meters. Afterwards,
in 1983, this amount was reduced to almost 100 meters
and finally in 1990, this source of error was officially
applied. The SA caused position determination error
to decrease by 100 meters horizontally and reduced
height measurement accuracy by 156 meters with the
possibility of 95 percent. In fact, from the civil user’s
point of view, errors resulted from the SA is like a sinus
function which varies over time and it affects measuring
pseudo distances with the Root Mean Square (RMS)
equal to almost 25 meters [6].

Table 1 illustrates the average amount of typical
GPS satellite errors in meters.

DGPS METHOD
In order to prevent errors and increase accuracy, the re-
liable DGPS method can be utilized. In this technique,
a second receiver has to be set up on a precisely known
location. This receiver uses transmitted signals from
the satellites to calculate its location and measures
the difference between the satellite indicated location
and the already known fixed location. As a result,
the system errors and inaccuracies will be detected
and then the required information for correcting the
errors will be calculated and broadcast to the other

Table 1. The average of typical GPS satellite system errors
in meters [7].

Error Source Value
Receiver noise 0.4
Troposphere 0.5
Multi-path 0.6
Satellite clock 1.5
Satellite orbit 2.5
lonosphere 5
SA 30
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GPS receivers located in the area. The receivers, based
on the correction signal, apply the needed corrections
to their calculated data. This method can improve
static positioning (for example land surveying) up to
some centimeters as well as kinetic positioning up
to some meters [8]. It is obvious that, in real-time
DGPS systems, in addition to a reference receiver-
transmitter system, some other special receivers are
needed. In non real-time systems (e.g. land surveying),
information transmitted by satellites is collected and
stored simultaneously in two fixed and known posi-
tions. Subsequently, this information is transferred to
a central computer system to be processed by special
software and finally the precise position data will be
obtained. The main problem in DGPS method is the
slow process of updating differential corrections. In
order to predict real-time differential GPS corrections,
three algorithms based on KF are proposed in this

paper.

KALMAN FILTER

KF is an efficient estimator which exploits state space
principle and system error modeling, resulting in op-
timum prediction of system state. Omne of the KF’s
important features is its recursive calculation which
stores the last step of calculations and, hence, uses
small capacity of memory and updates the previous
calculations when new information is received [9].

Second Order KF with Constant Transition
Matrix

In this section, the general discrete KF is formulated
which is comprised of two phases, namely, estimation
and correction. The process is governed by two
equations, a stochastic difference equation which esti-
mates the process and a measurement equation which
illustrates the measurement process as follows [10]:

Sn] = ¢Sin = 1] + Win] (1)

X[n] = HS[n] + ~[n] (2)

In the above equations, S[n] and S[n — 1] are 2 x 1
matrixes which represent the state of system at n and
n — 1 times, respectively. ¢ is a known 2 x 2 constant
matrix as well as H which is a known 1 x 2 constant
matrix. X[n] is 1 X 1 measurement vector, Win] is a
2 x 1 vector which demonstrates system modeling noise,
and y[n] is a 1 x 1 vector representing measurement
noise. R and @ are representing covariance matrixes of
processes y[n] and W [n] . The processes v[n] and W n]
are independent, zero mean Gaussian proportional to
02 and ¢? variances. The constant matrix ¢ (state

y
transition matrix) is defined as follows:

qzs:[o 1] (3)

Qy Qg

a1, as and also ai coefficients are estimated using

autocorrelation equations as described below:

o Rss(0) Rss(1) — Rss(1) Rss(2) (4)
! R%5(0) — R%g(1)

—R%4(1) + Rss(0) Rss(2)

" R%s(0) — Rg(1) (5)
O'Z, = RSS(O) — Oéles(l) — agRss(Q) (6)
which:

Rsslk] = E{S[i]S[i +k]} ; k=0,1,2 (7)

The brief description of second-order KF algorithm
with constant transition matrix is as follows [11]:

Step 1: Initialize KF parameters

R = [02] (8)
=[5 o | )
Py = { é (1) } (10)

H=10 1] (12)

Step 2: Generate the state transition matrix ¢ using
(3), (4), and (5) equations.

Step 3: Compute the Kalman gain

Kn] = P~ [n]HT(Hn]P~[n]H"[n]

+R[n])~! (13)
Step 4: Update the estimation process
S[n] = 8~ [n] + K[n](X[n] — H[n]S " [n]) (14)
Step 5: Update the error covariance
Pln] = (I — K[n]Hln])P~[n] (15)

Until this step, the correction phase is accom-
plished. From the next step, the estimation or
updating phase will be executed.
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Step 6: Project the state ahead

S7[n + 1] = ¢[n]S[n] (16)
Step 7: Project the error covariance ahead
P~ [n+1] = ¢[n] P[n]¢" [n] + Q[n] (17)

It should be mentioned that under conditions
where H, ¢, R, and @) are constant, both the estimation
error covariance and the Kalman gain will stabilize
quickly and then remain constant. By pre-computing
these parameters and using them in Kalman algorithm,
there would be no need for updating them in the
subsequent steps.

KF with Gauss-Markov Process

A stationary Gauss-Markov process is a Gauss-Markov
process which has an exponential autocorrelation fac-
tor. The autocorrelation and spectral functions for this
process are illustrated below [12]:

R.(1) = o2e Al (18)
2
S, (jw) = wii’iz (19)

In this process, the mean square (variance) and time

constant parameters are o2 and 1/, respectively.
The researches have shown that utilizing second-

order Gauss-Markov process with Power Spectral Den-

sity (PSD) function can improve measurement accu-

racy [1].
c m?
20
w4+ w {Rad.Sec—l} (20)

PSD = S(w) =

In equation (20), C demonstrates a constant which
is defined by a range of variations. When SA mode
is turned on, wy is almost equal to 0.012 Rad.Sec™!.
Based on the fact that the RMS of SA error is defined
equal to 30 meters, the parameter C' can be calculated
using the equation below:

+j00

1 C C
ds = —— — (30m)? 21
5 | et = G = G e
oo
The above equation yields C =

0.0043987m?(Rad.Sec™1)3.
The continuous state model of this process is
calculated using the equations below [1]:

R R | 4 RS e RO
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Another equivalent formulation for the above matrix-
based equation is:

X =FX+GU (23)

Because the Eq. (23) is a continuous time process, using
a sampled time At and Van Loan’s proposed method,
the matrixes ¢,, and @Q,, can be calculated as follows:

. T
Ao { OFAt ZCiI;VAC;' At } (24)
B=e'= { o ‘%Q” } (25)

Transposing the right below quarter of the above
matrix results in ¢,, and the right above quarter of
it helps to calculate the @,, matrix.

Second-Order KF with Variable Transition
Matrix

In this method, the state vector transition matrix ¢, is
computed using the Auto-Regressive (AR) time variant
model. This model is one of the famous models which
is applicable in random discrete time processes. The
AR model in time domain is described as follows [13]:

ai(n)y(n — i) + e(n) (26)

where y(n — i) demonstrates the outputs of the model,
and e(n) describes noise of the system at time n. a; is
a set of parameters which describe the model and the
default value is always ag = 1.

To identify the system, first the parameters «;
should be calculated in a way that summation of square
errors gets the minimum value. Therefore, this method
is called Least Squares (LS).

In case of applying the above-mentioned method
on the AR model, the parameter matrixes are calcu-
lated as below [13]:

0= [F"(N)F(V)] ' (N)Y (V) (27)
where the matrix 6 represents factors of AR model and
matrices (V) and F(N) are calculated as follows:

Y(N) =[y(n) y(n+1) y(N)]" (28)

o’

F(N)=[fT(n) fT(n+1) (29)

where the f7(n) matrix is defined as it is shown below:

fn)=[y(n —1) y(n-2) y(n —p)] (30)
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It should be mentioned that, by defining the matrix of
factors, the value of function y(n) at the time n can be
computed as follows:

y) = =Yy ca(mlyn — ) (31)

In order to generate state space, some AR differential
equations should be used as the following sequence of
equations shows:

z1(n) = y(n —p)
z2(n) =21 (n+1) =y(n —p+1)
z3(n) = z2(n +1) =y(n —p+2) (32)

2 1) = 23(n)

: (33)
zp(n+1) = —aprp(n) — ap_12p-1(n)

.= a1$1(n)

The equivalent matrix-based formulation of the Eq.
(33) can be:

x4 0 1 0 0 1

o 0 O 1 0 T2

Tp | —a; —ay —as —Qap Tp |,
(34)

0 1 0 0
0 0 1 0
b = . (35)
—a1 —Aaz —das —Qp
TXD —4{TXD TXDh ATXD
5 TTL to RS232 .
= K 7]
=1 o Converter =
2 38 rxpp—RXD rxpf Yrxp =
- [+ =
-+ (=]
o £ O
&}
GND—GND GND—{GND

| Power Supply |

Figure 1. The block diagram of data collection hardware.

DATA COLLECTION

In order to assess the efficiency and functionality of the
methods proposed so far in this paper, collecting actual
data seems to be absolutely essential. The data collec-
tion process has been accomplished on the building of
Computer Control and Fuzzy Logic Research Lab in
the Iran University of Science and Technology. Figure
1 depicts the block diagram of the hardware used in
data collection process.

According to the hardware shown in Figure 1,
the serial GPS receiver data are passed through TTL-
RS232 converter to change their levels from TTL to
RS232 standard and become ready to be connected to
the computer. It should be noted that the keyboard
on this hardware board is used for the purpose of
setting GPS receiver’s programmable parameters such
as the output protocol of receiver’s serial ports (NMEA
or Binary) and data transmission rate (4600 or 9600
bit/s).

The technical features of the GPS receiver used
in data collection process are [14]:

e 5 parallel channels,

e Capable of tracking and measuring up to 9 satellites,

e Supporting NMEA-0183 protocols with NMEA ap-
proved and developed messages,

e Capability of receiving differential RTCM SC-104
messages in order to increase positioning accuracy
in differential mode,

Capability of decreasing SA effect in static position-
ing,

e Measuring velocity up to 950 m/sec (3420 km/sec)
and acceleration 4g,

e Working with active and inactive antennas,

e Maximum position measuring accuracy in SPS
mode,

e Maximum operating flexibility with user’s com-
mands,

e Capability of satellite selection and limiting view
angle of satellites,

e Horizontal accuracy equal to 100 meters and vertical
accuracy equal to 188 meters,

e Information update rate 1 second,
e TMP or 1PPS output with accuracy of + MSec,

e Serial output protocol: binary or NMEA with speed
rate of 4800 or 9600 bit per second,

e RF input impedance 50 ohms with the acceptable
input power -163 dBW to -130 dBW.
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Figure 2. The results of 1000 prediction for component positions using KF with constant transition matrix (SA on).
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Figure 3. The results of 1000 prediction error for component positions using KF with constant transition matrix (SA on).

EXPERIMENTAL RESULTS
Figures 2 to 5 represent the real, predicted and predic-
tion error values of the component position errors for
1000 experimental data sets using KF with constant
transition matrix in SA error turned on and turned off
states.

Tables 2 and 3 depict the statistical features
of estimation errors for the tests which have been
accomplished on experimental data.

According to the results illustrated in Tables 2
and 3, it’s noticeable that the RMS errors in estimation
error of component positions using KF with constant
transition matrix in SA on and off modes reduced to

less than 1.5 and 0.9 meters, respectively. The results
from the tests carried out on real data show that
the functionality of KF in estimating components of

Table 2. Minimum, maximum, average, and RMS of errors
in predicting 1000 experimental data sets using KF with
constant transition matrix (SA on).

Parameters x y z
Max 4.9861 1.2761 1.8113
Min -16.1242 -5.9845 -25.9376

Average 0.0327 0.0045 0.0122
RMS 0.8281 0.4268 1.0953
Total RMS 1.4380
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Figure 5. The results of 1000 prediction error for component positions using KF with constant transition matrix (SA off).

position errors is independent of the effect of SA errors
which is one of the advantages of KF.
Figures 6 to 9 illustrate the real, predicted and

Table 3. Minimum, maximum, average, and RMS of errors
in predicting 1000 experimental data sets using KF with
constant transition matrix (SA off).

Parameters x y z
Max 2.1349 3.0893 1.8759
Min -2.4570 -2.0089 -2.4190

Average 0.0128 -0.0084 0.0058
RMS 0.5181 0.4550 0.4269
Total RMS 0.8108

prediction error values of the component position errors
for 1000 experimental data sets using KF with Gauss-
Markov modeling in SA error turned on and turned off
modes.

Tables 4 and 5 show the statistical characteristics
of prediction errors for the experiments which have
been done on the sample test data.

Based on the information in Tables 4 and 5, it’s
noticeable that the RMS errors in estimation errors
of component positions using KF with Gauss-Markov
modeling in SA on and off modes declined to less than
7.5 and 1.2 meters, respectively.

Figures 10 and 13 demonstrate the real, predicted



146 M. R. Mosavi, A. Nakhaei and Sh. Bagherinia
50 : : : :
e ==
P4 —~— | Dx-Predicted
ok _— . el Lnciii
: \\ "‘/ \'\ — B
g 50l — = |
100" ' - . -
0 100 200 300 400 500 600 T00 800 200 1000
Time [Sec.]
100 T T
D i
= 5 /_f * N
= %
: - N
al v e DA |
W s b SR
< L7 R e
el e | \ | |
0 100 200 300 400 500 600 700 B0D 200 1000
Time [Sec.]
60y T T T
‘U;— i ™
- s B
. L W P —
o~ . NN
i : L
it s /
P -'\-—)jl"_ 7 \ \-.\‘_{’ - 1_,/‘/" 7
% 100 200 :nln &I:ZO 500 sou nln 800 200 1000
Time [Sec ]

Figure 6. The results of 1000 prediction for component positions using KF with Gauss-Markov modeling (SA on).

- & T
i
g 2k g 1
= \ | oA
a _aL] 1|
7 | 1
B -4k I 1
w s‘ b i i | i |
o 100 200 300 400 500 600 700 600 900 1000
Time [Sec.]
_ 10 T T T
E
g s
2 f fr P
§ 0 i WA / i b
= W
&
B gl 1
Sl L 1 1 L I 1 1 L I ]
100 200 300 400 800 700 800 900 1000
Tirna [Sec.]
_ 10r T T
E
a -10
8
3 o0t
H
w i |
-0l L i i L i i i L | ]
0 100 200 a00 400 700 800 900 1000

500
Tirne [Sec.]

Figure 7. The results of 1000 prediction error for component positions using KF with Gauss-Markov modeling (SA on).

Tables 6 and 7 include the statistical features of
experiments which have been done on test data.

According to the information in Tables 6 and
7, the RMS errors in estimation errors of component

and prediction error values of the component position
errors for 1000 experimental data sets using KF with
variable transition matrix in SA error turned on and
turned off modes.

Table 5. Minimum, maximum, average, and RMS of errors
in predicting 1000 experimental data sets using KF with
Gauss-Markov modeling (SA off).

Table 4. Minimum, maximum, average, and RMS of errors
in predicting 1000 experimental data sets using KF with
Gauss-Markov matrix (SA on).

Parameters x N z Parameters x y z
Max 4.4338 6.3375 3.5531 Max 2.4061 3.0893 2.5399
Min -5.2681 -8.5273 -26.0181 Min -3.1232 -2.6064 -2.1410

Average 0.0511 0.0171 0.1626 Average 0.0106 -0.0215 0.0011
RMS 1.9333 3.1685 6.4422 RMS 0.8006 0.6234 0.5005
Total RMS 7.4350 Total RMS 1.1314
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Figure 8. The results of 1000 prediction for component positions using KF with Gauss-Markov modeling (SA off).
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Figure 9. The results of 1000 prediction error for component positions using KF with Gauss-Markov modeling (SA off).

positions using KF with variable transition matrix in

Table 6. Minimum, maximum, average, and RMS of errors
in predicting 1000 experimental data sets using KF with
variable transition matrix (SA on).

SA on and off modes decreased to less than 1 and 0.9
meters, respectively.

Table 7. Minimum, maximum, average, and RMS of errors
in predicting 1000 experimental data sets using KF with
variable transition matrix (SA off).

Parameters x y z Parameters x y z
Max 1.2327 1.6291 1.4203 Max 2.7573 2.1463 1.8208
Min -2.5791 -1.9614 | -1.5044 Min -2.5797 | -2.2583 | -2.6263

Average 0.0181 -0.0049 0.0204 Average -0.0008 0.0040 -0.0057
RMS 0.5627 0.6123 0.4987 RMS 0.5467 0.4607 0.4290
Total RMS 0.9697 Total RMS 0.8338
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Figure 10. The results of 1000 prediction for component positions using KF with variable transition matrix (SA on).
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Figure 11. The results of 1000 prediction error for component positions using KF with variable transition matrix (SA on).

Table 8 shows the comparing DGPS corrections
prediction accuracy using three proposed methods.

Table 8. Comparing DGPS corrections prediction accu-
racy using three proposed methods.

Prediction
Method
KF with constant

Accuracy (SA on) | Accuracy (SA off)

o . 1.4380 0.8108
transition matrix
KF with Gauss- 7.4350 1.1314
Markov modeling
KF with variable 0.9697 0.8338

transition matrix

As shown in Tables 2 to 7, the KF with variable
transition matrix has better accuracy than other meth-
ods for DGPS corrections prediction.

There are few papers that predict the DGPS
corrections using KF. The proposed KFs in this paper
have more accuracy than them.

CONCLUSION
Since GPS is increasingly used worldwide and it has
become an essential part of different fields of commerce
and military, subjects such as improvement in measure-
ment accuracy and data security in GPS systems are
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Figure 12. The results of 1000 prediction for component positions using KF with variable transition matrix (SA off).
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Figure 13. The results of 1000 prediction error for component positions using KF with variable transition matrix (SA off).

not only theoretical issues but also vital requirements
in these systems. In this paper, the way of utilizing an
inexpensive GPS receiver as a precise positioning de-
vice as well as algorithms based on KF with the purpose
of estimating DGPS corrections were suggested. The
experimental results on real data which collected in test
fields, gaurantee the high potential of these methods
to gain accurate positioning information. The results
demonstrated that it is possible to reduce position RMS
errors in single-frequency GPS receivers to less than
one meter.
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