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Low-Thrust Optimal Orbit
Raising with Plane Change

I. Shafieenejad', A. B. Novinzadeh?

A new quidance scheme for the problem of Low-thrust transfer between
inclined orbits is developed within the framework of optimal control theory. The
objective of the guidance scheme is to provide the appropriate thrust steering
program. that will transfer the wehicle from an inclined low earth orbits to the
high earth orbits. The presented guidance scheme is determined, using optimal
control theory such that minimum time performance measure is determined
and boundary conditions for these unspecified final time problems are satisfied.
One of the novelties of this work is changing independent variable from time
to thrust angle and considering properties of autonomous system equations to
reduce to one where exact analytical solution is obtained.

INTRODUCTION

Optimal low-thrust orbit transfer has received a great
deal of attention in the astrodynamics and flight me-
chanics literature over the past decades. The evolution
of low-thrust propulsion technologies has reached a
point where such systems have become an economical
option for many space mission applications. Also the
development of efficient control laws has received an
increasing amount of attention in recent vears, and
few studies have examined the subject of inclination
changing maneuvers [1-3].

Many applications of this problem involve low-
thrust propulsion systems where the orbit transfer
takes place over a relatively long duration. For
example, the minimum-time transfer of a 100 kg
spacecraft from low Earth (LEO) to geostationary orbit
(GEO) using a 1-N thruster take about 5 days, as
compared with about 5 h for a Hohman transfer, but
the continuous thrust case would typically use much
less propellant. The thrust-angle profile of a constant
—thrust orbit transfer depends on both the thrust
magnitude and the size of the orbit transfer [4].

Analytical solutions of the low-thrust problem are
very useful in preliminary mission analyses as well
as spacecraft system design and optimization. The
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overall design of a solar electric transfer vehicles or even
an integrated spacecraft requires extensive parametric
analyses for optimum sizing of the various power,
propulsion, and thermal management systems to max-
imize delivered payload to the destination orbit. These
parametric studies require hundreds of iterations, pre-
cluding the use of the numerically generated transfer
The analytic solutions are also desirable
for future onboard autonomous guidance applications,
especially for smaller spacecraft such as in the mini-and
microsatellite category where the application of low-
thrust technology for orbit maintenance and control is
most efficient {5, 6].

Analytic expressions for the maximum change in
inclination between two circular orbits of given size
with the continuous constant acceleration and fixed
transfer time is derived by Edelbum. Conversely, he
derived an analytical expression for the total velocity
needed to carry out the transfer between given inclined
circular orbits. This theory was later generalized by
Wiesel and Alfano {7], who allowed for the variation of
the out-of-plane or thrust vaw angle during each revo-
lution, unlike Edelbum, who used the simpler constant
vaw profile. Thus, the semi major axis and inclination
space was mapped by direct numerical integration
of the simplified differential equations, such that the
minimum time for a given transfer is read directly
from the solution map. In Ref. [8] the optimal thrust
pith and yaw profiles required for a given transfer were
determined in a semi analytical way by also considering
discontinues thrust due to eclipsing. In Ref. [9], rapid
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transfer calculations were demonstrated by analytic
modeling of the various transfer parameters including
shadowing and solar power degradation effects due to
the Van Allen radiation belts. The thrust vaw angle
is held constant through the transfer, and the required
value is determined by iteration. This not as optimal as
the Edelbum steering solution, which holds the vaw an-
gle constant during each revolution but varies its value
from revolution to revolution in an optimal manner.
All of these analyses assume that the orbit remains or
is forced to be circular after each cycle or revolution. In
Ref. [5] the original Edelbum theory is revisited by first
extending and completing it and by deriving the vaw
steering expressions without ambiguity and recasting
the theory within the framework of optimal control
for minimum time. In Ref. [11], the author looks
again at Edelbum’s approach but some improvements
are introduced, while maintaining the assumption of
quasi-circular orbits. Trajectories with variable thrust
and specific impulse at constant power are analyzed.

We begin by defining the idealized model and the
equations of motion. The equations are considered as
Edelbum’s model. Minimum-time transfers is estab-
lished, which needs to solve a tow-point boundary value
problem requiring the determination of the unknown
initial and final parameters for the Lagrange multipliers
or costates. In the present paper, all solutions are
obtained exact analytically and spacecraft is modeled
point-mass that moving in inclined plane and being
controlled with a constant thrust with variable direc-
tion.

OPTIMAL CONTROL IN
DYNAMIC SYSTEMS
Optimal control problems of dynamics systems can be
formulated using calculus of variations. In this regard,
one usually assumes mathematical representation of
the system tinder study as a first-order differential
equation:

B = FIEW), A1), 1,

where #(t) denotes the n-states and @(t) is the vector of
m-control components. The second step in formulation
of optimal control problem is to introduce an appropri-
ate performance function. A conventional form can be
expressed as:

to <t <ty (1)

ty

T=oltn). )+ [ LIE®, aw. e 2
Jtg

where ¢ [T (tr), ;] is the penalty function for the final

states at the final time. Additionally, there are could

exist terminal constrains in functional form for final

time unspecified situations, presented as:

lE(ty), t;]=0 (3)
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Subsequently, the governing differential equations as
well as the terminal constraints are augmented to the
performance function using Lagrange multipliers »(#)
and A(t), respectively.

J= {¢+y7’w}t_tf+/tf{L (z, @, )+ AT f (2,4, 1) :T] }dt
Jig
(4)

Having officially formulated the problem, the first step
toward a variational solution is to determine the system
Hamiltonian

H=TL(x,u,t)+ A" () f (z,u,t) (5)

Based on the Hamiltonian, the necessary condition for
an optimal solution are:

I. the state equation:

’—a—H—'F (), ¢
=" =@, w0, (6)

II. the costate equation:

. (aHN" _ [af\" arN" _
= (%) = () » () )

IT1. and the optimality condition:

The above equations need to be simultaneously
satisfied, considering an appropriate set of initial
and boundary conditions given below;

TV. initial conditions:

Ap(tg) =0 (9)

T (to) = (is known)

V. orthogonality conditions:

9 Ao\ T

i 8@ Tad’ a(b Tad’ .
{ +v (8$+V am)erL} (11)

(10)

Y7 o ot

V1. terminal conditions.
Vlaty),t;]] =0 (12)

The optimality condition (8) usually allows for optimal
determination of the m-control components as func-
tions of the states and the costates. The solution of
the 2u differential Eqs. (6) and (7) are to be considered
with the aid of 2n +1+ ¢ boundary conditions specified
in Eqgs. (9)-(12). Since in most practical applications,
the governing equations are non-linear, one dose not
usually expert to obtain an analytically solution but it
is very important to get analytical solution for problem
[12-14].
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LOW-THRUST ORBITAL TRANSFER
The problems are formulated as an optimal control
problems with the thrust direction being the control
variable. The advantage of these guidance laws are
that, they are the exact solutions to the two-point
boundary value problems that we can name them as
hypersensitive optimal control problem which satisfied
terminal conditions for time free changing planes ma-
neuvers for low-thrust spacecrafts. Furthermore, in
these methodologies, the several difficulties associated
with the numerical determination of optimal control so-
lutions for nonlinear systems, such as slow convergence
rate and high sensitivity to problem are removed.

In this paper, the investigation is performed by
solving optimal control problem for three performance
indexes and using the Edelbaum’s equation to describe
the underlying dynamics. Edelbaum used Lagrange
planetary equations of orbital motion to develop new,
simply and applicable equations set. As mentioned,
problems such that arise frequently in astrodynamics
applications which often the control resources available
for achieving desired objectives, so that finding an
optimal control strategy analytically, or exact solution
to satisfying performance measures are very important.
There are important problems which play keys role
in finding space vehicle trajectories based on the
performance indexes such as time, effort, fuel, tracking
errors and etc [6].

The spacecraft status and its conditions in this
work are described as follow:

a) Assuming constant acceleration and yaw angle as
control variable.

b} Assuming orbital inclination and velocity as the
state variables.

¢) Each revolution is considered as a circular orbit
with respect to Edelbaum’s analysis.

The variation of Hamiltonian is considered for many
cases with respect to performance indexes. Minimum-
time, Minimum-effort and minimum-effort-time perfor-
mance indexes which they are studied for non mass
variant, and results are examined for many maneuvers
from LEO to GEO.

Edelbum linearizes the Lagrange planetary equa-
tions of orbital motion about a circular orbit.

The full set of the Gaussian form of the La-
grangian planetary equations for near-circular orbits is
given by:

PRNELE L (13)

mV

_ 2 fcos(a)  f, sin{a)

mV mV

(14)

&1
. 2fisin(a) = f,cos(a)
9T v + mV (15)
”é — fh COS (a) (16)

mV

G- fr sin Ea)
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. 2f, frsin ()
— o . 1
a=nt mV  mV tan(i) (18)

where a stand for orbit semi major axis, ¢ for inclination
and Q for the right ascension of the ascending node;
€, = e cos {w), e, = e sin{w) with e and w standing for
orbital eccentricity and argument of perigee. Finally,
@ = w-+M represents the mean angular position, M the
mean anomaly, and n = ((%)1 ’ the orbit mean motion,
with p standing for the Earth gravity constant and for
near-circular orbits V = na = (%)1/ ® The components
of the thrust vector along the tangent, normal, and
out-of-plane directions are depicted by f;, f, and fj,
with the normal direction oriented towards the center
of attraction. If we assume only the tangential and
out-of- plane thrust vector Figure 1, and that the orbit
remains circular during the transfer, above equations
reduces to:

Qe 2?}& (19)
i w (20)
Q= f’s%l(a) 1)
hmy Grsn(@) (22

V tan (i)

If £ represents the magnitude of the acceleration
vector, and # the out-of-plane or thrust vaw angle
then & = £cos(f) and &, = &sin(f). Furthermore,
@ =w-+ M = w-+ 8" = 6 the angular position when
e = 0, with § = nt and #* the true anomaly. Tf
the angle 3 is held piecewise constant switching sign
at the orbital antinodes, then the &, sin(f3) terms will
have a net zero contribution such that the system of
differential equations further reduces to:

= 2
i= 2 (23)

P &5 cos (@)
=
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f=n {(25)

These equations may now be averaged with respect to
true anomaly to obtain the long-period motion using
the averaging operator.

(7) = % /3119 (26)

Assuming that the out-of-plane thrust angle 7 is a
function of true anomaly only and the change in
elements during each orbit is small, and with respect
to f and by holding £, 3 and V constant the averaging
operator may be applied to above equations to yield:

o (di 9 ¢ 5in (A —n/2
/0 (dt)”'mif(m/ cos (0) df (27)

—7/2
di  4&sin(B)

D e TSN 2
T v (28)
di  2&sin(B)
b 4 2
dt VvV (29)
From the energy equation L; — 2 = 2 and with Eq.
{23) used to eliminate the semi major axis:

T o H — A
dv = [2 Va?} da = —¢cos(B) dt (30)
dv
A 3 1
= teos(d) (31)

Let the system equations be given by Eq. (29) and (31),
with variables ¢ and V as the states variables and § as
the control variable [6, 15].

% — ‘2£si!‘1(ﬂ3)
t} TV i (32)
4 = —&cos(B)

MIN TIME LOW-THRUST
ORBITAL TRANSFER
In this part, transfer problem is cast as minimum time
problem between initial and final conditions iy, Vj and
if, V¢ respectively. The variational Hamiltonian is
then given by:

2¢ sin(B)

H:1+/\i( .
'V

) + Ay (— £ cos(B)) (33)
The performance measure is simply: J = [ Ldt with
L = 1. Using the costate equation the Euler-Lagrange
differential are given by:

d\ _ _0H _ (34)

dt i
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Figure 1. Schematic diagram of transfer.
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due to Eq. (34), A; is a constant. From Eq. (8) the
optimal condition is:

OH 2\ & cos(f)
B - TV

+ A, Esin(f) =0 {36)

Nothing right hand side of system equation is not
an explicit function of time, hence H is not explicit
function of time, so Hamiltonian is constant on the
optimal trajectory and H = 0. In the other words
problem is autonomous and Hamiltonian is constant for
an optimal path; since the final time is not specified,
the constant must be zero [5, 12]. To illustrate this
results and show accuracy of solutions, Figures (2-4)
are sketched for boundary conditions of scenario III of
Table 1. Tt is evident that history of Hamiltonian and
optimality condition are vanished.

H(t) =0 (37)
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Figure 6. Optimal orbital maneuver from LEO to GEO.

Above conditions and optimality relation are lead-
ing to bellows method by considering some proper
trigonometric expressions and Eqs. (33, 36).

H. (cos(ﬁ)):(lJr/\i(ggjri?f(m)Jr/\v (—¢ COS(B)))
A(—cos(B3)) =0 (38)
a1:,7}15111([7’) = (W - /\‘,,fsin([f)) .sin(f) =0
(39)
By adding Eq. (40) and Eq. (41):
H.(—cos(f)) + aﬁsin(ﬁ) ={ (40)

op

Hence there is no need to integrate and simply costates
are obtained.

/\i — 771 x Vsin(8)
A, = o) ¢ (41)

It should be noted, right hand side of system equation
is not an explicit function of time, and the time
derivatives appearing in the governing equation can be
written with respect to 3. In this way, now 3 becomes
the independent variable.

g % sin(B)¢

Todhy T 7
dt a5 1

(42)

One can find implicit relation for § and ¢ from Eq. (42),
80 new system equations are given by:

di . 2

g = x

Vv _ _ Vcos(B) (43)
g sin{3)

Due to the simple form of Eq. (43), it is integrated
to yield the results as a function of the control angle 3,

sV sin(B) Ve
= “sn(d) or V= —172— (44)

v sin(f3)
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2(3 — By)

T

=15+ (45)
Obviously for explicit results, it is needed to specify the
values of By and (. This can be accomplished through
using the known initial and terminal conditions and
solving a set of non-linear algebraic equations. For
example, if conditions are considered as first scenario of
Table 1, initial and final control angles are achieved as
Bo = 21.9911° and 3; = 66.7838° and AS = 44.79270°.
These results are the same and identical with results of
Ref. [5] for min-time performance expenditure. But
in this work calculations are simplified and reduced
to achieve exact closed form solutions for low-thrust
orbital transfer. As mentioned, solutions have been ex-
pressed in terms of # simply without time interference
and it is important note because low-thrust transfers
have long transfer time. Figure 6 shows how optimal
orbital maneuver accomplished around the Earth. If
the problem has no explicit depends on time, then time
to go, is really the important time [12]. Next step,
time to go is derived with respect to 5. Finally Low-
thrust total transfer time for first scenario of Table 1 is
191.2738 days. To show the results of this part Figures
7-10 for third scenario of Table 1 are sketched and
Figure 11 represents changes of acceleration magnitude
vis-a~vis time duration. Figure (11) shows how total
time reduces when acceleration increases.

Vf Sill(ﬁf — ﬂ)

Esin(f) (46)

Timetogo =

CONCLUSION
This paper describes the solutions of an optimal or-
bital transfer. The dynamics incorporate low-thrust
transfer from low earth orbits to high earth orbits
by considering orbital plane changes that compatible
with the circular maneuver assumptions. The optimal
solutions to the min-time, constant-thrust maneuvers
have some interesting properties. Using the equation of
motion in a different form with respect to thrust angle
permits the investigation of essentially complicated
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calculations which have not previously been reported
for this problem. The method used to solve the opti-
mal control problem is referred to use some concepts
of optimal control theory especially for autonomous
system equations and they make clear why this orbital
transfer has to be set up as exact closed form solutions.
Min-time performance measure is provided in this

Table 1. Parameters of four scenarios, for minimum time low thrust transfer.

Scenario Scenario I | Scenario Il | Scenario III | Scenario IV
Result ’t‘g‘z 28.5° z‘p = 45° z‘p = §8° 2:0 = &7°
1y =0° 1y =0° 1y =0° 1y = 40°
Final Time(day) | 191.2738 236.2708 295.4406 241.8129
Boldeg) 21.9911 23.9725 19.2437 23.8294
By (deg) 66.7838 94.6942 126.1121 97.6943
ABcontror {deg) | 44.79270 70.7216 106.8683 73.8648
AViotal 5.7841 7.1448 8.9341 7.3124
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work. The results presented here provide a through
foundation for future studies of continuous, low-thrust
problems of this type in closed form solutions especially
for other performance indexes like min-effort, min-fuel
and efc.
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