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Stability Proof of Gain-Scheduling Controller for
Skid-to-Turn Missile Using Kharitonov Theorem
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Gain scheduling is one of the most popular nonlinear control design approaches
which has been widely and successfully applied in fields ranging from aerospace
to process control. Despite the wide application of gain scheduling controllers,
there is a notable lack of analysis on the stability of these controllers. The most
common application of these kinds of controllers is in the field of flight control
and autopilots. The main goal of this paper is to apply a methodology to prove
stability of a gain scheduled controller used in directing Skid-to-Turn missiles.
One of the most widespread applications of gain scheduling controller is
the main problem of this paper. To design the controller we use pole placement
in state feedback controllers and a kind of innovative interpolation to reduce
Jumping in gains related to changing the flight conditions. Finally we utilize
root locus and Kharitonov’s Theorem to prove stability of the linearized plant.
The presented approach for stability analysis 1s distinctive in the literature.

INTRODUCTION

Practical models of systems in engineering are often
nonlinear and in many cases, plants have variable
dynamics constrained in a specific operating region. In
such cases, applying the concept of Gain Scheduling
{GS) is a typical solution of the control problem [1,
2. GS is one of the most popular approaches to
non-linear, adaptive control systems design and has
been the subject of extensive research over recent
years, both from theoretical and practical viewpoints.
This rehabilitated interest perhaps stems from the
development of new techniques which allow a more
systematic treatment of the GS problem.

Motion Control of flying objects may be the
widest field of applving GS in practice. Design of
longitudinal control system {autopilot) for a highly
agile missile is a challenging problem, and has at-
tracted the attention of many researchers [1, 3-7].
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This is perhaps due to large variations in system
parameters such as weight and moving method coupled
with significant constraints on controller bandwidth.
Although GS was introduced before two decades ago,
the increasingly extension of its applications attracted
researchers attention in 1990’s. However, they did not
pay enough attention to its theoretical analysis like sta-
bility proofs. Most of the papers were about presenting
new interpolation methods or new applications of such
a powerful method and at most analysis around these
cases [3, 8-10].

The main contribution of this paper has two
sections: The first one is introducing straight-forward
design procedure for GS technique with an application
in flight control of Skid-To-Turn (STT) Missiles. Sec-
ondly, a new approach is utilized to prove the stability
of the closed loop controlled system. In stability analy-
sis two different viewpoints are considered. Using poles’
locations for linear system including interpolation led
us to design better controllers but it can not be used for
proof. Our approach to prove the stability was utilizing
Kharitonov Theorem to cover the whole of operating
space. This new point of view to a gain scheduling
controller which was inspired from Robust Control was
not existed in the literature of GS before.

The remaining of this paper is arranged as fol-
lows: In section II Gain Scheduling controller and its
advantages and drawbacks are described. Stability and
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Kharitonov Theorem as our approach to this concept
are explained in next section in detail. Dynamic of
Skid-To-Turn Missile and designing controller descrip-
tion is the subject of Section IV. Section V describes the
stability proof of the aforementioned controller. Finally
section VI concludes this paper.

GAIN SCHEDULING

Gain Scheduling is one of the most applicable methods
with a long usage period. Probably the most important
motive in utilizing GS is existence of systems with
variable dynamics. Absolutely it is one of the best
methods of coping with variation of parameters in
dynamic systems such as motion control of flying
objects.

In this paper the focus is on gain scheduling in
the sense of a controller with continuously varying
coefficients according to the current value of scheduling
signals. They are also called scheduling variables,
that may be either exogenous signals or endogenous
signals with respect to the plant. However, other
interpretations are not completely ignored.

Designing Gain Scheduling controller can be ex-
plained in four steps. At first a linear parameter-
varying model of the system should be determined.
The most common approach is based on Jacobian
linearization of the nonlinear plant about a family of
equilibrium points (operating points). This yields a
parameterized set of linearized plants and forms the
basis for linearization scheduling. In fact these equa-
tions are functions of system variables and exogenous
signals named “Scheduling Variables”. One of the most
significant parts of designing GS controllers is selecting
such scheduling variables that include the variations of
the plant completely. Heuristically the variables with
slower variations can be chosen as scheduling variables
1, 21

The second step is to use linear design methods
to design controllers for the linear parameter-varying
plant model considering the control objects. This
design process may result directly in a family of lin-
ear controllers corresponding to the linear parameter-
dependent plant, or there may be an interpolation
process to arrive at a family of linear controllers from
a set of controller designs at the isolated values of the
scheduling variables.

In the third step, which has the main role in the
procedure, the set of designed controllers in operating
points should be extended to controllers in whole of
the state space. In other words this stage involves
implementing the family of linear controllers such that
the controller coeflicients are scheduled according to
the current value of the scheduling variables.

Finally, the fourth step is performance assess-
ment. This includes the evaluation of implementing
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the final gain scheduled controller in nonlinear sys-
tem. In the best case, where analytical performance
guarantees are part of the design process, this may be
relatively simple. More typically, the local stability and
performance properties of the gain scheduled controller
might be subject to analytical investigation, while the
nonlocal performance evaluation is based on simulation
studies [2].

Utilization of linear control designing methods in
linearized models around scheduling points is the most
important advantage of using GS to control nonlinear
plants. This simplifies a complex nonlinear problem
considerably. For example frequency domain methods
and quadratic evaluation functions to investigate the
performance and output/state feedback control are
instances of common methods. Also applying robust
control approaches especially when the model involves
uncertainties is another aspect of GS. Such controllers
are fast response to condition variation too {1].

To gain these advantages, the designer should
cope with some difficulties too. One of these problems
is determining the scheduling variables. As stated
before selecting variables with slow variations is one
way, but in practical applications, they are determined
from the physical and implementing characteristics of
the problem. It is not far from reality that is said
“the function of scheduling variables that specifies the
process of changing the gain is the most complexity
of this method” [1, 9-11]. The common method is
fitting a curve to existing data. Interpolation is another
standard approach. In such conditions, it seems that
using robust, multi variable or complex linear control
methods converts GS to a more complicated technique.
Allin all, GS is not a general method and only includes
a limited operating region [2, 9 and 10]. Off course
it can be extended to consider whole of the required
operating space with much effort. However, the vast
usages of GS show that its advantages overcome the
complexities and drawbacks.

STABILITY

Stability can be considered as a qualitative aspect of an
engineering system. Obviously it is the most significant
feature of a control system. All the practical and
operating systems must have a stable design to work
properly and usually an unstable system is useless and
not applicable. The concept of stability for linear
time invariant (LTT) systems is straightforward, but in
dynamic nonlinear or time variant plants it will become
more challenging [12].

Although there exist several techniques for sta-
bility proofs of linear systems, extension of stability
analysis to nonlinear and time variant systems has a
considerable importance in control engineering.
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Kharitonov’s theorem
In LTI systems the response to an input consists of a
part similar to input and an exponential term. When
the eigen-values of the system have negative real parts
the exponential response tends to zero and the system
is stable and vice versa (if the real parts were positive,
the response will diverge unlimitedly and will become
infinity; named unstable response) [12, 13]. LTT sys-
tems can be analyzed by calculating the characteristic
equation and investigating its coefficients. But when
the system changes related to time or parameters,
the usual methods like Routh Hurwitz table are not
applicable. In 1978 V. L. Kharitonov presented his
theorem to solve this problem [14].

Kharitonov’s Theorem: All polynomials of the
form (1):

P(s,a) = ag + a15 + ass® + azs® + ags* + ...+ a,s"

satisfying:
a; <a; <a; (2)

and

0¢ [an,an) (3)

are stable if and only if the following four polynomials
are stable:
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In other words the coeflicients of the polynomial can
show a point in n dimensional space which are con-
strained in a n-cube determined by maximum and
minimum values of parameters. Therefore the stability
of Kharitonov’s polynomials which are four of the end
points in a n dimensional space guarantee the stability
in whole of the constrained region inside the n-cube.

SKID-TO-TURN MISSILE AND
DESIGNING THE CONTROLLER
As explained before, flying objects control is one of
the applications that uses GS as a popular control
method. Tn this section the formulation of STT missile
is described. Also designed gain scheduled controller
for its motion control is explained in the following.

8,
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Figure 1. Block diagram of closed loop controlled system.

e o

Figure 2. Dynamic model of the missile.

Skid-To-Turn missile dynamics

The missile dynamics considered here is taken from
[15, 16]. The objective is to force a missile to track a
desired given motion pattern. To this end, the guidance
navigation system generates the reference acceleration
commands for the center of the mass. This last one is
compared to the actual normal acceleration measured
in order to produce a tracking error. The control
problem consists of generating a tail deflection (6} that
produces the angle of attack that corresponds to the
required maneuver. The closed-loop block chart is
shown in Figure 1.

To simplify the problem, the mass of the missile
was considered invariant and it moved in one direction.
With these simplifications, which are common in liter-
ature [4], the nonlinear motion equations summarized
in two forces and one momentum. Through Figure 2
the formulation will be arranged as (5-7).

F, =QSCp ()
F,=QS5CN (6)
M, = QSdCy (7

() is the dynamic pressure that depends on static
pressure and relative velocity of the missile. Consid-
ering the angle of attack («) and pitch rate (¢) as the
state variables, the differential equations and output
equation of the system convert to (8)-(9) and (10)
respectively;

cos o
- F,
“ mV,, +a )
M,
.M, 9
=7 (9)
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in which V,,, denotes the missile speed and Cy and Cyy
are the aerodynamic coeflicients which are described as
below:

Cola,6, M) = —0.3 (11)

L ) M
Cn{o, b, M)=pFino” +Panor fa}+Ban (2 — 3 S
=cp(a, M) +d,é (12)

. ~ _ _ 8M
C’M(&'ﬁ,M)=L7’1M&3+Lf2M&IOZHLfsM(/+ ;) )&

+ d‘nlﬁ = C‘m,(a$ A[) + d‘m,(S (13)

where B;n, Oin, d,, and d,,, are the constant aerody-
namic polynomial coeflicients.

Tail deflection actuator has the following dynam-
ics:
. 1
b= —(bc — ) (14)

o
In this formula 6. is the commanded tail deflection
which is produced by controller, and tail deflection is
limited to |] < 40°.

Designing gain scheduling feedback controllers
To design a desired Gain-Scheduling controller, at
first a suitable system model which is the function
of system parameters should be prepared. The next
step in designing GS controllers is defining appropriate
scheduling variables. Angle of attack and Mach number
are to be used for scheduling purpose. This is mainly
due to the fact that these two variables are best in
revealing dynamical changes in the system and can
be estimated with no difficulty. Therefore, finding a
linear parameter variable (LPV) model based on these
variables, is the aim of the first stage. This attitude
resulted in nonlinear state and output equations as
follows.

@ =k, MCycosa+q, ko = , (15)
mV,
. 0.7P,5d
i=kMCy, k= ‘,7“ (16)
Y
. 0.7PyS
an = k,CyM2,  fy =0 (17)
m

As mentioned before one of the advantages of GS
controllers is the ability of utilizing linear methods
for designing controllers. Thus, linearization of the
equations around equilibrium points and using linear
pole placement result in the desired performance. With

this approach the linear system equations can be
calculated according to (18).

a0 Aa ] g By
{d}{ﬂ/{a]}{qg}Jr{Md}ﬁ (18)
The output equation will be as (19):
an =] Coy 0][ as]+dsbd (19)

and the coeflicients formulations are described by (20)-
(25).

Ay = K. M {Bcn coso — (cn - d"'cm) sin a} (20)

3(1 dvn
v a 1Y
M, = K, Mzé (21)
B, — K, Md,, cos « (22)
My = K,M?%d,, (23)
dd =K, A/Izdn (24)
Coy = K. M? g (25)
Ja

The variables of the linear model are o and M which
are the scheduling variables. On the other hand, « is
a system state variable too. Such systems are named
Quassi LPV (QLPV). But the significant problem is
that this parameter is not measurable and the only
measurable variables are ay and ¢. This problem
can be solved via a simple parameter changing that
introduces a new state variable:

Z(t) =aY™ —an (26)

With these modifications the formulations are con-
verted to a different new appearance. Assume that the
new state variables vectorisx = [ 2 ¢ 6 [z ]TA
New equations will be computed as (27) -(29):

& = Az + Bé. + Eay™ (27)

Ay —Cay 4 —ByCoy+ Ayds O

I Madyg
Ao | Can 0 My e 0
0 0 = 0
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Figure 3. The controllers gains changes related to Mach number (X-Axis) and angle of attack (Y-Axis).

Now, a proper model of system is ready to use for
designing the controller. In this step, using the pole
placement and state feedback, desired controllers were
designed in twenty operating points as scheduling
points. The number of points is chosen experimentally
and like that Mehrabian et al selected [4]. In the next
step, to compute controller coefficients, linear interpo-
lation between neighbor points gives the coeflicients of
controller in plates between them. Considering whole
the points’ effect proportional to distances between
this point and the other ones determines the required
controller. Therefore; the changes in each point affect
on the coefficients of the other points and alter the
plates between the points. Obviously, the points near
each operating point are influenced mostly by that
point. Figure 3 shows the plates that are constructed
between operating points for four coeflicients of the
states.

The performance of resulted GS controller is
depicted in Figure 4. The input signal tracking
is desirable and step-like variations are followed by
minimum perturbation. The abrupt variations in input
signal do not resulted in sudden variations and large

values of control effort derivative. Also desired time
constant and overshoot were considered in designing
the linear controllers in each point.

STABILITY ANALYSIS OF THE
CONTROLLED CLOSED LOOP SYSTEM

Root Locus Approach
The GS controller which was described in the previous
section has a satisfying performance in simulations
and keeps the stability of the system. In this section
the stability is investigated via a basic concept in
linear systems stability analysis, root locus. In linear
systems, everything about stability can be realized
from locations of the systems’ poles; systems that
have poles with negative real parts (poles place in the
side of imaginary axis) are stable and even only one
pole with positive real part makes it unstable. Using
this simple concept, the stability of the closed loop
including GS controller and nonlinear model of missile
can be analyzed.

Figure 5 shows the poles of the closed loop system
that contains the linearized system and controller in
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Figure 4. Performance of the system responding to changing step-like input.

numerous points covering the space. Obviously the
number of points is limited and between each two pints
there exist infinite points which are not evaluated.
Therefore; although this cannot prove the stability,
at least being all the points in right half plane, as
illustrated in Figure 5, can increase the confidence of
being stable in the whole of the space. For this reason
another approach was required to prove the stability
which persuaded us to use Kharitonov Theorem to
cover the whole space.

The New Approach; Using Kharitonov
Theorem

As described before, root locus drawn in Figure 5
shows the behavior of system poles through possible
variations and can be used to ensure us about the
stability. On the other hand, if this figure contains
only one point in the right half plane, then it concludes
that the system is unstable. However; this approach
is not an acceptable stability proof. Thus Kharitonov
theorem is utilized in this section to present a complete
proof as a new point of view in such problems.

The aforementioned GS controller can be assumed
as a state feedback controller which its gains are tuned
via pole placement. The system characteristic equation
will be easily computed using gain scheduled state
feedback controller and system model. Variations of
the system parameters besides the changing controller
result in characteristic equations with variable coefli-

cients. Also because the limits of the variations of
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Figure 5. The closed loop root locus. The scheduling
parameters are changing with tiny variations to stabilize

the whole of the possible conditions reasonably.

the system parameters in aforementioned plates are
determined, the controller gains and model variation
limits can be calculated easily. Then using Kharitonov
theorem, computing related four polynomials in each
plate and investigating their stability the proof will
be completed. Table 1 shows these limits and the
polynomials are calculated via (4). From this point
of view stability will be guaranteed in each plate and
because of the continuity between the plates the proof
will be generalized to the whole of the space.
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CONCLUSION
A new approach about stability analysis of gain
scheduling controllers for a specific kind of missiles
named Skid-to-Turn missile was presented in this
paper. At first, to apply the gain scheduling as a
controller designing method, a new interpolation was
presented which was used in the motion control of the
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