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Differential Equation of Sensitivity Matrix

for Final Velocity Constraint

S.H. Jalali-Naini!

In this paper, differential equation of sensitivity matriz of required velocity with
respect to position vector is derived for a linearized problem of a spacecraft

motion with final wvelocity constraint.

This matriz can be utilized for an

mmplicit guidance of a spacecraft with final position and welocity constraint.
The solution is obtained in the presence of aerodynamical force. Therefore, the
resulting equation can be used for trajectory optimization. Moreover, a change
of variable is presented to reduce onboard computational burden. In addition,
the method is more appropriate for analytical approaches than comventional

implicit equations.

INTRODUCTION

Guidance laws based on velocity-to-be-gained may be
classified into two categories, namely explicit and im-
plicit schemes {1,2]. In explicit guidance, the required
velocity is computed onboard explicitly whereas the
velocity-to-be-gained is computed via a first-order dif-
ferential equation in the well-known Q guidance as an
implicit one. In Q guidance variants, a required veloc-
ity is defined as the instantaneous velocity required to
satisfy a set of final objectives [3-6]. Extensive research
has been done for implementation of Q guidance by
many investigators, from 1960’s up to now, some of
which can be found in Refs. [5-10].

In 1987, Bhat and Shrivastava developed a mod-
ified Q-guidance scheme for placing a payload into
a specified circular orbit {11]. An implicit guidance
equation has been added to the well-known Q-guidance
scheme in order to modify implicit guidance equations
for orbit injection, i.e., it can be utilized for final
position and velocity constraints {12]. This added
equation is based on the sensitivity matrix of required
velocity with respect to position vector when final
velocity is constrained, denoted by Q...

It is worth noting that the velocity-to-be-gained
guldance technique presented in Ref. [4] is workable if
it is possible to define, at each instant of thrusting, a
required velocity to meet mission objectives which is a
function only of current position, as stated by Battin.

1. (Corresponding Author), Assistant
Tarbiat Modares University,

Email:shjalalinaini@modares.ac.ir

Professor,
Tehran, Iran,

This requirement cannot be met for the problem having
both final position and velocity constraints.

There is another type of guidance law that
determines a near optimal or an effective direction
of the thrust vector for orbit injection [13-17]. 1In
this class of guidance scheme, an explicit or iterative
[17] algorithm is utilized for calculation of the thrust
direction. Implicit and explicit guidance algorithms
have their advantages and disadvantages which are
beyond the scope of this paper.

In the present work, the differential equation of
Q. is derived. This sensitivity matrix is utilized for
a modified implicit guidance with final position and
velocity constraints. For the purpose of trajectory
optimization, the equations are obtained in the pres-
ence of atmosphere. Finally, a change of variable
is proposed for conventional and modified implicit
guidance schemes.

REQUIRED VELOCITY
The governing equation of motion of a vehicle as a
particle is, here, modeled by a linear time-varving
differential equation as follows:

¥ =f(t)+ F{t)r + F(t)v +a, (1)

where r, v, a. are the vehicle position, velocity, and
achieved commanded acceleration vectors with respect
to an inertial reference, respectively. Also, f(¢)isa3x1
vector; F,.(t) and F,(t) are 3 x 3 matrices, that may be
obtained by linearization about a reference trajectory.
The achieved commanded acceleration depends on
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control system dynamics. The system dynamics is
modeled by the following state space representation:

P=v (2a)
v =1(t) + F.({)r + F,(t)v + a. (2b)
d, = A“()x + Bo(x,u,t)u (2¢)
p = AP(H)x + B,(x,u,t)u (2d)

where x = [r7 vT al pT]T is the state vector; p is
an arbitrary n-component vector including remaining
state variables of a control system; u is the commanded
acceleration (control input); A*(t) and AP(t) are sub-
matrices of the system matrix; and B,(x,u,t) and
B,(x,u,t) are analytical functions in our domain of
interest. The superscript “T” represents the transpose
of a vector or matrix. All matrices are of appropriate
dimensions.

The system matrix and its fundamental matrix, if

obtainable, are written as

0 I 0 0
\F@) R I 0
AD=100 An) A 4,00 *
P.t) P.(t) Pu(t) PBy(t)
‘An. = [‘A‘r ‘A‘U ‘Aa ‘AP:l (3b)
A? =[P, P, P, P} (3)
D1 Do D1y Pug
| ®Pa1 By Doz Doy
St ty) = By Doy Doy Dy W

a1 Bar Buz Buu

where 0 and T are zero and identity matrices of
appropriate dimensions, respectively. The argument
of &,; in the preceding relation is (f,ty), not shown for
compactness.

Equation (1) can be rewritten in the following

matrix form:

d|r r N

dt |v v

Cousider ®f(t,t,) as the fundamental matrix for the
following system matrix:

0 I

0
a. -+ f(t)

()

AR(t) = (6)

The fundamental matrix ®7(t,¢,) is partitioned into
four 3 x 3 submatrices, that is,

’ L (t,tg) DI (t,t)
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Consider a linear differential equation of:

z= A"tz + G(x,u,t) (8)

which integrates into:

7(t) = dF(t, tg)m(ty) + /t BE (1, MG (x(A), u(A), A)dA
o (9)

where z = [r7 v7]7 and:

G(x,u,t) = (10)

0
a. -+ f(t)
Substitution vields:

r(t) = 7 (¢,t0)r(to) + DT5(t, to)v(to)

+ [ oA +a ()

to

v(t) = B (¢, to)r(ty) + B (¢, t0)v(to)

+f B MIF) + ac (W] (12)

()

The preceding relation is rewritten between a specified
final time ¢; and the current time ¢ as follows:

v(tr) =B (tr, Or(t) + S5 (25, 1)v(E)
+ [ "B M) + (WA (13)

On the other hand, the achieved commanded accelera-
tion without input control u is found to be:

ac(t) = @31(t, tg)r(tg) -+ (I)gz(t, t())V(t())
+ ®33(t, to)ac(to) + Paalt, to)p(to)

4 / Baa(t, OF()de (14)

71y

Therefore, for t < A <1y we arrive at:

ac(/\) = (1)31(/\, t)r(t) + (1)32(/\, t)V(t)
+ Paz(A thac(t) + $aa(A, t)p(t)

A
4 / Baa(A, )E(C)dE (15)
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The final velocity without control effort is then given
by:

Vltr) = B (t7,0e(t) + B (17, (1)
+ /tf B (tr, ME(N)dA
b [ B, B (A 00 + B0 V()
+ Baa (A, Dac(t) + Paal A, ) p(t)]dA

34
+ / BE (17, )
Jt

A
/ @32(/\,£)f(£)d£} A (16)

Rearrangement gives:
. ¢
vit)=#8i(tr.0+ [ 0t 2000 x(0
L Jt
. »
L Jt

- / ’ d‘).ﬁ?z(tf,/\)@gg(/\,t)d/\} ac(t)

+ -/‘f @gé(tf,/\)@:;z;(/\,t)d/\} p(t)

f A
+,/f, /,« djgé(t‘f’/\)(1)32(’\»£)f(f)d£d/\ (17)

The desired velocity vi(t) is defined as an instanta-
neous velocity, required to satisfy the final velocity
constraint v¥(t;} without any control effort. Hence:

viitp= |# 0 + [ @%(tf,/\rbm(/\,t)d/\} r(t)
L gt

+ o0+ d‘%(tf,/\)%-z(/\,t)d/\} 0
L Jt

+ -/tf @gé(tf,/\)@%(/\,t)d/\} a.(t)

+ / fdi.ﬁ?‘z(tf,,\)@34(/\»t)d/\} p(t)
+ / 7B (17, MEIA

ty o pA
+,/f [ B (17, Near (A OF()dedh (1)

Solving for the desired velocity v (¢), the following
expression will be obtained if the second item bracketed

in Eq. (18) is invertible:

—1

ty
vi= {@%(tf,tw / d‘%(tf,/\)%-z(/\,t)d/\}
Jt
ty
{vin - [sheno+ [ #he o000
Jt

tr
- V qjgé(tf'»/\)@33(/\,t)d/\} a.
Jt

1

- [ e o nole- e e

ty pA
*/t / @ﬁ%(tf,A)@m(/\,s)f(s)dsd/\} (19)

Taking the partial derivative with respect to r results in
the sensitivity matrix for the linearized problem, that
is:

-1

av

ty
Se=- {@g(tf,t) + / @ﬁz(twﬂ@w(’\’t”’\}
Jt

X {@.ﬁ(tf,tw [ f@g‘z(tf,/\)@m(/\,t)d/\:l (20)

The preceding relation could have also been obtained
in the form of ®u; (t;,t)®1(ts,t). However, one
advantage of the presented method is that Eq. (20)
is derived in terms of ®3; and ®3,, indicating the
dependence of a, on position and velocity.

Now consider the case in which the state variables
of control system, i.e., a. and p are not dependent
on the vehicle position and velocity. In this case, the
system matrix (3a) simplifies to:

0 I 0 0
| R R T 0
A=\ 0 Aty A1) .
0 0 P.(t)  P,(t)

The control system can also be expressed as:

B1 (ac» p,u, t)
u
B‘z(ac» P, t)

(22)

For this case, we have ®3q (¢, 1) = 0, P3a2(t,t) = 0,
@41(t,t0) = O, and @42(t,t0) = (. HQDCQ, Eq (20)
simplifies to:

ij —1
o =~ (17, 0@ (5, 1) (23)
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DIFFERENTIAL EQUATION OF
SENSITIVITY MATRIX
Consider the system matrix of a system to be given by
Eq. (21), that is:

0 I 0 0
F.(t) F.(t I 0
Alt) = ®) (®) (24)
0 0 Aty A
0 0 P.(t) P,(t)
Now define the matrix C(ts,t) as follows:
-1
C(tﬁ t) = —‘I’fz (tf$ t)(I)‘éRl(tf» t) (25)
Differentiation yields:
Clty,t) = — i, (87, )04 (¢7,1)
1 .
~B3 (L7, )%5 (t5,8) (26)

Using the relation d(M ™) /dt = —M~'MM~" for the
differentiation of an invertible square matrix M, we
have:

d

o SOf (085, 088 (L0 (27)

‘bfz (tf$ t)

Using the property of £ ®%(t,t) = —®F(t,,¢)AR(t)

we obtain:

S (1, 1) = — (7, O F (1) (28)
Substitution of Eqgs. (27) and (28) into Eq. (26) results
in:

C’(tf$ t) - F‘v(t)c(tf% ) +C? (tf$ ) = Fr(t) (29)

The preceding differential equation for: C(ty,t) =
—®E (17, )BE (t;,1) will be obtained if the system
matrix is in the form of Eq. (24).

From Eq. (23) it turns out for system (2) with the
system matrix (24}, that the partial derivative of the

Fr11

"0 20 40 60 80 100 120
t(s)

Figure 1. Flements of F, matrix versus time.
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desired velocity v with respect tor, i.e., dvi/Or = Q,
is equal to C(ty, ) Hence:

Q‘v - Fv(t)Q‘v + sz = Fr(t) (30)

To calculate @, from the preceding differential equa-
tion, the initial or final value of @), is needed. From
definition (25) we have:

—1

From the property of ®7(¢;,t;) = T we have:

f(t,t1) = Isxs (32a)
B (t, 1) = Izus {32b)
OfL(t,t1) = 033 (32¢)
L (t1,t1) = 33 {(32d)

It follows that the final value of C{t;,t) can be
calculated. Thus:

Cltg,ty) =

Hence, the final value of O, becomes 03.3. Note that
the differential equation of @, has been obtained here
assuming the state variables of control system, i.e. a,
and p, are not dependent on the vehicle position and
velocity.

The differential equation of @, can be reduced to:

-1
~®F (ty, t))®5 (tr,tr) = 0353 (33)

Qu+ Q) = Fi(t) (34)

provided that the cut off (or burnout) occurs in the
exoatmosphere. In this case, the desired velocity
reduces to a hypothetical velocity referred to as “re-
quired velocity” defined in the vacuum. As a simple
approximation, neglecting Q2 in comparison to F,(t),
and integrating results in:

Quits tr) — Qultrt) = /t ' Fo(ede (35)

Applying Q. (tr,ty) = O3z yields:

Quity. )~ — / " (e (36)

Now, a vertical planar motion in the spherical Earth
model is considered. The vehicle nominal trajectory is
given by:

z; = R, cos(r/3) + 4.73¢> (37a)
z; = R, sin(r/3) + 8.87¢ (37b)

where R, is the Earth radius and (2, z1) are the Earth-
centered inertial coordinates.



Differential Equation of Sensitivity Matrix for Final Velocity Constraint 59

Figure 1 shows the behavior of F, = Jdg/or
elements versus time for the nominal trajectory. Ap-
proximate solution (36) may further be simplified to:
Htgo

5
T

Qulty t) = —tgoFo(t) = = 2 (rIaxa —xrry)  (38)
where t, = t; —t is the time-to-go until the final time,
ry is the vehicle position vector (r; = |ry]}, and p is the
Earth gravitational parameter. In a planar motion, it
is easy to show that @, matrix obtained from Eq. (34)
will be symmetrical one when dg/dr is symmetrical.

Figure 2 depicts the three different solution meth-
ods for Q, elements. In this figure, the numerical
solution of differential equation of @, for the linearized
problem is shown by solid lines, approximate solution
(38) by dash-lines, and the approximate solution of
Av! /Ar using a nonlinear flight simulation by circles.
The results are case dependent, and approximate
solution (38) needs to be modified.

As a future study, the exact analytical solution
for @, such as the one developed by Martin [5] for
@, is suggested to be done. Also, perturbation tech-
niques may give accurate approximation for onboard
calculations. As a comparative work, the methods
of calculations of @, and their accuracies can be
compared.

REDUCED FORM
The differential equation of the velocity-to-be-gained,
the required velocity minus the current velocity of a
spacecraft, is given by [3]:

dv
= Qv, —ar (39)

d
where ar is the nongravitational acceleration. Since an
accelerometer can only sense the resultant nongravita-
tional acceleration, the required velocity is defined for
the vacuum. Therefore, Q matrix is calculated in the
vacunm. To calculate the two velocity errors for final
position and velocity constraints, we have {3,12]:

dvt

L= —Qiv, —ar,

= 1=porv {40)

where the subscript or superscript “p” deduces conven-
tional Q guidance, and the subscript or superscript “v”
deduces the differential equation of the velocity-to-be-
gained for final velocity constraint (vi = v —v).

Using the following change of variable:
z; = F; V; (41)

we have z; = Fivf} + Fivi. The present change
of variable was introduced in Ref. [18], and here it
is utilized for the problem having final position and
velocity constraints.

o 20 40 60 a0 100 120
t(s)

x 10"

80 100 120

Zb 4‘0 60 Bb 160 1é0
t(s)
(c)
Figure 2. Three different solutions of Q. elements.
Solid line is the solution of differential Eq. (34), dash-
line is approximate solution (36), and circles are numerical
differentiation using flight simulation.

'
O(.t)

Substitution of Eq. (40) into the preceding rela-
tion yields:
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If F, is obtained in such a way that F; — F;Q; = O3y,
we will have:

(43a)
{43b)

Zy = 7F‘p ar
2‘:1 = 7FU ar

The preceding formulation reduces onboard computa-
tional burden. In addition, it is more appropriate for
analytical approaches than Eq. (40).

For the linearized problem, one can obtain:

7, = Qia(ty, t)v) {44a)
7, = $oa(ts, t)vy {44b)
Therefore,

i, = —Bis(ts, tar (45a)
7, = —Poy(ts, tar (45b)

Depending on applications, other changes of vari-
ables may be useful. For instance, using F, = t,,15x3,
one can obtain:

. 1
Z, = (Qp + 713)(3) Z, — t_qoa'T (46)

tyo

The parenthetic expression in the preceding relation
will be zero for constant gravity model in the vacuum.
Therefore, this expression represents any deviation
from the constant gravity model.

CONCLUSIONS

The desired or required velocity of a spacecraft is de-
rived for final velocity constraint with a specified final
time. The control system dynamics is taken arbitrary
order with nonlinear input matrix. The sensitivity
matrix of the required velocity with respect to position
vector is then obtained. In addition, the differential
equation of the sensitivity matrix is derived assuming
that the state variables of the control system are not
dependent on the vehicle position and velocity. This
sensitivity matrix, besides the conventional Q guidance
relation, can be utilized for an implicit guidance of a
spacecraft with final position and velocity constraint.
For this purpose, the required velocity is defined for
the vacuum, but it works in the atmosphere for the
ascending phase provided that the cut off (or burnout)
occurs in the vacuum. The solution is also obtained in
the presence of aerodynamical force. This formulation
may be utilized for a trajectory optimization of a
spacecraft. Finally, a change of variable is utilized
whose benefits are two folded. First, it reduces onboard
computational burden. Second, it is more appropriate
for analytical approaches than conventional implicit
equations.
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