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A complete miss distance analysis of true proportional 

navigation is carried out due to initial heading error, step target 

maneuver, and seeker noise sources assuming a first-order 

control system using forward and adjoint methods. For this 

purpose, linearized equations are utilized for deterministic and 

stochastic analyses. Worst case analysis shows that the 

maximum value of the final time-miss distance plots reduces by 

increasing the value of the effective navigation ratio due to 

initial heading error and step target acceleration. The number 

of peaks of these curves obeys the relation of the effective 

navigation ratio minus 1 (or 2) due to heading error (or step 

target maneuver). Moreover, the normalized miss coefficients 

due to seeker noise sources and miss due to random target 

maneuver are computed and approximate formulas are 

presented using the curve fitting method. This leads to an 

approximate formula for miss distance budget. Therefore, 

optimum values of the effective navigation ratio and control 

system time constant are obtained. Finally, the preferred values 

of these parameters are calculated for increased RMS miss of 

5%, 10%, and 20% compared to its minimum value  for two 

scenarios. 

Keywords: Proportional Navigation, 

Guidance, Miss Distance Analysis, Optimum 

Parameters, Seeker Noise. 
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Introduction 

Proportional navigation (PN) is a well-known two-

point guidance law. This type of guidance law and 

its variants have been widely used. The 

performance of PN is also utilized as a bench mark 

to their modifications and other two-point 

guidance laws. Therefore, a complete performance 

analysis of PN is needed for different 

circumstances. For this purpose, many works have 

been performed including acceleration demanding 

and evaluating the effect of system time constant, 

system order, system delay, acceleration limit, 

seeker noise sources, radome error slope, 
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nonminimum phase dynamics, and different types 

of  target maneuvers on miss distance [1-7].  

There are several tools for performance analysis of 

guidance laws, mainly forward and adjoint 

methods [8-13]. Unfortunately, the adjoint method 

is restricted to linear systems. In the case that the 

governing equations of system are normalized, the 

results are more suitable and the number of 

parameters are reduced, so the analysis is more 

suitable and give insight to the problem. The 

normalized analysis and results can be utilized to 

obtain approximate formulas for the problem; for 

example, steady-state miss coefficients due to 

seeker noise sources, the effect of the guidance and 

control system delay, and acceleration limit. These 
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formulas are as importance as the analytical 

solutions and  significant from the practical point 

of view. 

The noise-induced miss distance analytical 

solution of True PN (TPN) is available in literature 

only for a first-order control system. Miss distance 

formulas of PN are available for the first-order 

control system when the effective navigation ratios 

are integer [8,14]. For non-integer effective 

navigation ratios, a formula was obtained using 

series solution whereas the number of series terms 

is finite for integer effective navigation ratios [15].  

    The assessment and analytical formulas were 

also presented for linear quadratic Gaussian 

(LQG) optimal guidance laws. Analytical 

formulas of bounds (the greatest lower bound) on 

the achievable RMS miss were derived for step-, 

exponential-, and sinusoidal target maneuvers in 

the presence of glint noise [16,17]. The results 

were extended for discrete LQG problem [18], and 

multiple-model-based terminal guidance laws 

[19].   

   In this study, the analysis on miss distance peaks 

with respect to effective navigation ratio, the 

relation between the number of miss distance 

peaks and effective navigation ratio, and RMS 

miss due to initial heading error and step target 

maneuver is presented. The RMS miss formulas 

are also obtained for integer effective navigation 

ratios ≤8. Moreover, the miss distance budget 

formula is obtained by using approximate 

formulas via curve fitting, and an explicit formula 

is derived for the optimum effective navigation 

ratio. Finally, explicit formulas are obtained for the  

optimum effective navigation ratio and system 

time constant when the glint is the dominant noise 

source.      

Linearized Single-Lag PN Guidance 

The commanded acceleration of TPN is given by: 

𝑛c = 𝑁′𝑣c𝜆̇  (1) 

where 𝑁′ is the effective navigation ratio,  vc is the 

interceptor-target closing velocity, and 𝜆̇ is the 

line-of-sight (LOS) rate. 

   The block diagram of TPN is shown in Fig. 1 for 

a first-order control system, based on linearized 

 
Figure 1. Block diagram of the linearized single-lag 

PN guidance  

equations in which s is the Laplace domain 

variable. The linearized equations of the guidance 

problem are written in normalized form as follows: 

𝑦̂′ = 𝑣̂                                                                                (2) 

𝑣̂′ = 𝑛̂T − 𝑛̂M                                                                   (3) 

𝑛̂M
′ = (𝑛̂c − 𝑛̂M),   𝑛̂𝑐 = 𝑁′𝜆̂′                                        (4) 

where ( )′ is the derivative with respect to 

normalized time 𝜏 = 𝑡/𝑇 and 

𝑦̂ =
𝑦

𝐴𝑇2
 ,   𝑣̂ =

𝑣

𝐴𝑇
 ,  𝑛̂𝑀 =

𝑛𝑀

𝐴
     

𝑛̂𝑇 =
𝑛𝑇

𝐴
,    𝜆̂ =

𝑣𝑐𝜆

𝐴𝑇
,   𝜆̂′ =

𝑣𝑐𝜆̇

𝐴
                                   (5) 

in which A is the normalizing parameter (in m/s2), 

𝜆 is the LOS angle, y is the interceptor-target 

separation along the direction perpendicular to the 

initial LOS in the linearized geometry (𝑦̈ = 𝑛𝑇 −

𝑛𝑀),  𝑛𝑇 is the target acceleration, and  𝑛𝑀 is the 

achieved commanded acceleration, both of them 

are assumed to be in the direction perpendicular to 

the initial LOS. By using the small angle 

approximation, we have λ=y/vctgo where tgo =𝑡𝑓 − 𝑡 

is the time-to-go until intercept. The closing 

velocity is also assumed to be constant. 

Fortunately, the closing velocity is omitted from 

the equations. Normalized miss distance can then 

be approximated by 𝑦̂(𝜏𝑓) in which 𝜏𝑓 = 𝑡𝑓/𝑇.   

   The equations are normalized to reduce the 

number of parameters. Therefore, the normalized 

miss becomes a function of the effective 

navigation ratio and normalized final time 𝑡𝑓/𝑇.   

The analysis is performed for two cases:  

a) 𝑛𝑇 = 0 & Heading Error ≠ 0, 

b) 𝑛𝑇 ≠ 0 & Heading Error = 0.  

The normalizing parameter is chosen 𝐴 = ν0 for 

the first case whereas it is set to 𝑛𝑇 for the second 

one. 

ν0 = -νM sin(HE) ,  𝑣0 = −1 (6) 

where νM is the interceptor velocity. The preceding 

relation is valid for head on or tail chaise 
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engagement. In the case of linearization about the 

collision course, the simplified relation is ν0 =

-νM HE using the small angle assumption.   

Analytical Solutions 

An analytical solution of miss  due to heading error 

is available for an integer 𝑁′ using the inverse 

Laplace transform of the following formula [8]: 

MD

−𝑣𝑀HE
(𝑠) =

1

𝑠2
[𝑠 (𝑠 +

1

𝑇
)⁄ ]

𝑁′

 (7) 

Also, the series form solution is given by [4] 

MD

−𝑇𝑣𝑀HE
= −𝑒−𝑥 ∑

(𝑁′ − 2)! (−𝑥)𝑗

(𝑗 − 1)! (𝑁′ − 𝑗 − 1)!  𝑗!

𝑁′−1

𝑗=1

   (8) 

where  𝑥 = 𝑡𝑓/𝑇. Note that the denominator of the 

preceding relations is 𝑇ν0 (see Eq. 6). The sinus 

function may be simplified to its argument based 

on the small angle approximation. 

   Miss due to step target maneuver is given by [8] 

MD

𝑛𝑇

(𝑠) =
1

𝑠3
[𝑠 (𝑠 +

1

𝑇
)⁄ ]

𝑁′

                                      (9) 

The inverse Laplace transform is simply available 

for an integer effective navigation ratio. The series 

form solution is also given by [14]  

MD

𝑛𝑇𝑇2
= 𝑒−𝑥 ∑

(𝑁′ − 3)! (−𝑥)𝑗

(𝑗 − 2)! (𝑁′ − 𝑗 − 1)!  𝑗!

𝑁′−1

𝑗=2

         (10) 

  The preceding series solutions for 𝑁′ =

2,3,4, … ,8 can be viewed in Appendix A for the two 

mentioned cases. 

   Since the normalized miss is a function of two 

parameters 𝑁′ and 𝑡𝑓/𝑇, and miss distance varies 

about the 𝑡𝑓-axis for practical values of 𝑁′ and 𝑡𝑓 <

12𝑇, a useful parameter is the root mean square (or 

mean of the absolute) value of the miss between 

two specified final times, that is, for the interval 

[𝑡𝑓1   𝑡𝑓2 ]: 

RMS MD = √
1

𝑡𝑓2 − 𝑡𝑓1

∫ MD2
𝑡𝑓2

𝑡𝑓1

(𝑡𝑓)𝑑𝑡𝑓 

(11) 

Mean |MD| =
1

𝑡𝑓2 − 𝑡𝑓1

∫ |MD(𝑡𝑓)|
𝑡𝑓2

𝑡𝑓1

𝑑𝑡𝑓 
(12) 

 

In our analysis, we set 𝑡𝑓1 = 0 and 𝑡𝑓2 = 𝑡𝑓; 

however, we have kept the notation 𝑡𝑓2 in the 

figures to avoid ambiguity. Therefore, the RMS 

miss becomes only a function of 𝑁′, which helps 

us to determine an optimum value or a preferred 

range for 𝑁′.   

   The RMS miss formulas can be obtained 

analytically for integer values of 𝑁′.  For example, 

the RMS miss due to heading error for 𝑁′ = 2 is 

given by  

2RMS MD

𝑇𝑣M|HE|
|

𝑁′=2

= √
1 − 𝑒−2𝑥(2𝑥2 + 2𝑥 + 1)

𝑥
 (13) 

In a similar way, the RMS miss distance due to 

step target maneuver is obtained for 𝑁′ = 3 as 

follows:  

4RMS MD

𝑇2𝑛𝑇

|
𝑁′=3

= √
3 − 𝑒−2𝑥(2𝑥4 + 4𝑥3 + 6𝑥2 + 6𝑥 + 3)

𝑥
 

(14) 

 

By applying the rules of the adjoint method from 

Ref. [8], the adjoint model of the block diagram of 

Fig. 1 is plotted in Fig. 2. Mean absolute and RMS 

values of miss have been added to the adjoint block 

diagram for 𝑡𝑓1 = 0 and 𝑡𝑓2 = 𝑡𝑓. The miss 

distance results for non-integer 𝑁′ are obtained 

numerically using forward and adjoint models.  

It is worth noting that the above-mentioned RMS 

miss due to step target maneuver is equivalent to 

the problem that a target has a step maneuver 

(either plus or minus 𝑛𝑇) with uniformly 

distributed starting time over the final time 𝑡𝑓.   

 

Figure 2. Block diagram of the adjoint model of the 

linearized TPN (𝑡𝑓1 = 0 & 𝑡𝑓2 = 𝑡𝑓 in Eqs. 11 & 12) 
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MD Analysis due to Heading Error   

First, normalized miss distance analysis due to 

heading error is performed using forward and 

adjoint methods (case a: HE ≠ 0,  𝑛𝑇 = 0). For this 

purpose, the absolute value of the miss distance 

versus the final time and effective navigation ratio 

is shown in Fig. 3. This result is also plotted in two 

dimension in Fig. 4 for different values of effective 

navigation ratios. As seen in the figures, increasing 

the effective navigation ratio decreases the value 

of the first peak (from the left) of the  𝑡𝑓-|MD| plot. 

The behavior of the second peak versus 𝑁′ is 

different. Increasing 𝑁′ increases the value of the 

second peak for 2 ≤ 𝑁′< 4.32 then decreases for    

𝑁′> 4.32. To investigate this behavior more 

accurately, the value of the ith peak, |MD𝑃𝑖 |, versus 

the effective navigation ratio is depicted in Fig. 5 

for i=1,2,3,4,5. The important result is that the 

worst miss value decreases by increasing the 

effective navigation ratio (checked for ≤ 25). This 

behavior is not seen for a fifth-order binomial 

control system which has an optimum value of 

𝑁′ = 3.75 based on the worst case analysis. 

Now the question is what the number of peaks (𝑛𝑝) 

is for the 𝑡𝑓-|MD| plot. For the integer value of 𝑁′ 

we have found the relation 𝑛𝑝=𝑁′-1 (checked for 

𝑁′ ≤ 25 from MD formulas as presented in  

Appendix A). The number of peaks are obtained 

numerically by trial and error, plotted in Fig. 6 for 

integer and non-integer values of 𝑁′ (peak values 

greater than 0.0005 is considered). The results are in 

close agreement for integer values according to the 

relation 𝑛𝑝=𝑁′-1, shown by star in Fig. 6.    

 
  Figure 3. Absolute miss due to heading error versus 

final time and 𝑁′ in normalized form.  

 
Figure 4. Absolute value of miss distance due to 

heading error in normalized form. 

 

Figure 5. Normalized absolute miss for the ith peak of  

𝑡𝑓-|MD| plot due to heading error (k=1,2,3,4,5). 
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Figure 6. Number of peaks of 𝑡𝑓-|MD| plot due to 

heading error. 

Figure 7 shows the RMS miss due to initial 

heading error over the interval [0  𝑡𝑓2] versus 𝑁′ 

and 𝑡𝑓2 in normalized form. The results are also 

plotted in two-dimension for various values of 𝑁′ 

in Fig. 8. Moreover, the mean absolute miss versus 

𝑡𝑓2  is depicted in Fig. 9. From the figures, it seems 

the RMS (or the mean absolute) value decreases by 

increasing 𝑁′ for a specified value of 𝑡𝑓2. This can 

be seen more clearly in Fig. 10 that shows the RMS 

miss versus 𝑁′ for different values of 𝑡𝑓2 =

𝑇, 2𝑇, 4𝑇, 6𝑇, 8𝑇, 10𝑇, 12𝑇 (i.e., the interval length 

𝑡𝑓2 − 𝑡𝑓1; 𝑡𝑓1 = 0).  

 
Figure 7. RMS miss in the interval [0  𝑡𝑓2] versus 𝑡𝑓2 

and 𝑁′ in normalized form (due to HE). 

 
Figure 8. RMS miss in the interval [0  𝑡𝑓2] versus 𝑡𝑓2 

in normalized form (due to HE).  

 
Figure 9.  Mean absolute miss in the interval [0  𝑡𝑓2] 

versus 𝑡𝑓2 in normalized form for different values of 

the effective navigation ratio (due to HE) 

Figure 10. RMS miss in the interval [0  𝑡𝑓2] versus 𝑁′ 

for 𝑡𝑓2/T=1,2,4,6,8,10,12 in normalized form (due to HE) 

MD Analysis due to Step Target Maneuver  

In the second step, miss distance analysis is carried 

out for a target with a constant acceleration in 
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normalized form (case b: HE = 0, 𝑛𝑇 ≠ 0). The 

results are obtained by two methods: the forward 

and adjoint methods. The analysis is performed the 

same as the previous section. Normalized miss 

distance curves are plotted in Figs. 11 and 12. The 

behavior of the 𝑡𝑓-|MD| peaks is shown in Fig. 13. 

For this case, the number of peaks obeys the 

relation 𝑛𝑃=𝑁′-2 (checked for 𝑁′ ≤25) according to 

Fig. 14 for integer values of 𝑁′. Normalized peak 

values greater than 0.001 is considered in Fig. 14 

for non-integer values of 𝑁′. As shown in the 

figures, miss distance is reduced by increasing the 

effective navigation ratio for the worst case 

(checked for 𝑁′ ≤20).  

As an important behavior, the miss distance in the 

𝑡𝑓-|MD| curves becomes zero due to HE at a 

 
Figure 11. Absolute miss distance due to step target 

maneuver versus final time and 𝑁′ in normalized form 

(𝑛𝑇>0).  

Figure 12. Absolute miss distance due to step target  

maneuver in normalized form (𝑛𝑇>0). 

 

Figure 13. Normalized miss distance for the kth peak 

of the 𝑡𝑓-|MD| plot due to step target maneuver 

(k=1,2,3,4,5, 𝑛𝑇>0). 

specified final time (or several final times, 

depending of the value of  𝑁′), whereas its absolute 

miss  value due to step target maneuver has a local 

Figure 14. Number of peaks of the 𝑡𝑓-|MD| plot due to 

step target maneuver. 
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Figure 15. Opposite behavior of miss due to HE 

against miss due to step maneuver for 𝑡𝑓/𝑇=2 (𝑁′ = 3) 

maximum at the same final time. Hence, we see 

the miss distance has an opposite behavior with 

respect to the final time for the two cases a and b 

as seen in Fig. 15. As a result, a modification on 

the effective navigation ratio based on HE may not  

work against a step target maneuver and vice 

versa, as seen in Ref [20] in which a modified 

profile for 𝑁′ based on HE, did not work against a 

step target maneuver when 𝑁′ was chosen as a 

function of the angle between the relative velocity 

and LOS. Therefore, 𝑁′ was designed as a function 

of this angle and its rate. 

The RMS MD analysis is shown in Figs. 16, 17, 

and 19. As mentioned before, these results are the 

same as the ones for the stochastic case when the 

starting time of a step maneuver is uniformly 

distributed over the final time.  The mean absolute 

miss is also plotted in Fig. 18. 

Figure 16. RMS miss distance in the interval [0  𝑡𝑓2] 

versus 𝑡𝑓2 and 𝑁′ in normalized form due to a step 

target maneuver (𝑛𝑇>0). 

 

Figure 17. RMS miss distance in the interval [0  𝑡𝑓2] 

versus 𝑡𝑓2 in normalized form for different values of 

the effective Navigation ratios (due to 𝑛𝑇). 

 

Figure 18. Mean absolute miss in the interval 

[0   𝑡𝑓2] versus 𝑡𝑓2 in normalized form for different 

values of the effective Navigation ratios (due to 𝑛𝑇>0). 

Figure 19. RMS miss in the interval [0  𝑡𝑓2] versus 𝑁′ 

for different values of 𝑡𝑓2/T=1,2,4,6,8,10,12 in 

normalized form (due to 𝑛𝑇). 
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MD Analysis due to Seeker Noise  

In the third step, the normalized miss coefficients 

due to seeker noise sources are obtained using 

adjoint model according to Ref. [8]. The  

normalized miss coefficient due to glint noise 

(𝑘GL) versus the effective navigation ratio is 

depicted in Fig. 20. A linear relation is also 

obtained for 𝑘GL
2  as follows:  

𝑘GL
2 (𝑁′) = 0.864 𝑁′ − 0.541 (15) 

Using the preceding relation, the maximum 

absolute error of 𝑘GL is 0.004 for 3≤ 𝑁′ ≤ 6. The 

maximum absolute error increases to 0.03 for 2 ≤

𝑁′ < 8.  

   The normalized miss coefficient due to range-

independent noise (𝑘FN) versus the effective 

navigation ratio is plotted in Fig. 21. For this case, 

the following curve fitting is obtained:  

𝑘FN
2 (𝑁′) = 0.0295 𝑁′ + 0.194 (16) 

with the maximum absolute error of 0.001 in 𝑘FN 

for 3≤ 𝑁′ ≤ 6. The maximum absolute error 

increases to 0.0075 for 2 ≤ 𝑁′ < 8.  

    Figure 22 shows the normalized miss coefficient 

due to semi-active range dependent noise (𝑘RN) 

versus the effective navigation ratio. The 

following equation has a maximum absolute error 

of 0.0027 in 𝑘RN when 3 ≤ 𝑁′ ≤ 7: 

𝑘RN
2 (𝑁′) = 0.099 𝑁′ + 0.826 (17) 

The value of maximum absolute error is increased 

to 0.05 when 2 ≤ 𝑁′ ≤ 8.  

 

 

 

 
Figure 20. Steady-state glint noise coefficient and its 

curve fitting versus the effective navigation ratio. 

 

Figure 21. Steady-state range independent noise 

coefficient and its curve fitting versus the effective 

navigation ratio. 

 

Figure 22. Steady-state semi-active range dependent 

noise coefficient and its curve fitting versus the 

effective navigation ratio. 

 

Results and Discussion 

In the previous sections, the miss distance analysis 

is carried out due to initial HE, step target 

maneuver (with the two interpretations), and 

seeker noise sources for semi-active radar homing 

interceptors. We are now to obtain the optimum 

value of the effective navigation ratio that 

minimizes the total standard deviation of miss 

distance. For this purpose, the step target 

maneuver (either plus or minus 𝑛𝑇) with a random 

starting time over the flight time and seeker noise 

sources are considered. The total standard 

deviation is given by  

𝜎2 = 𝜎𝑛𝑇
2 + 𝜎GL

2 + 𝜎FN
2 + 𝜎RN

2                                 (18)   

where each subscript corresponds to a seeker noise 

source, similar to the normalized miss  coefficients 
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due to seeker noise sources, except the first one in 

the right hand side that stands for a random target  

maneuver. Substituting the relations for the 

normalized miss coefficients due to seeker noise 

sources, we have 

𝜎2(𝑁′, 𝑇) = 𝜎𝑛𝑇
2 (𝑁′, 𝑇) +

1

𝑇
𝑘GL

2 (𝑁′)∅GL 

+𝑘FN
2 (𝑁′)∅FN𝑇𝑣𝑐

2 +
1

𝑅𝐴
2 𝑘RN

2 (𝑁′)∅RN𝑇3𝑣𝑐
4 

(19) 

where ∅’s are the power spectral densities of the 

seeker noise sources according to the model of 

Ref. [8], with the subscripts defined as in 𝜎’s. The 

power spectral density of a range dependent noise 

is defined at a reference range 𝑅𝐴 [8]. 

   First, the optimization may be carried out 

numerically using Eq. (19) when T is also 

considered as a design variable. The results are 

shown in Figs. 23 and 24 for two scenarios as 

follows:  

Scenario 1: 𝑛𝑇 = 6𝑔 m s2⁄ , ∅GL = 1 m2 Hz⁄ , ∅FN =

2 × 10−8  rad2 Hz⁄ , ∅RN = 8 × 10−6  rad2 Hz⁄ ,

𝑣𝑐 = 1500 m s⁄ , 𝑅𝐴 = 6000 m; 

Scenario 2: 𝑛𝑇 = 6𝑔 m s2⁄ , ∅GL = 2 m2 Hz⁄ , ∅FN =

2 × 10−8  rad2 Hz⁄ , ∅RN = 2 × 10−6  rad2 Hz⁄ ,

𝑣𝑐 = 1200 m s⁄ , 𝑅𝐴 = 3000 m. 

As seen in Fig. 23 b, the optimum values are 𝑁′∗ =

 3.42 and 𝑇∗=0.52 when 𝑡𝑓 = 5 s for Scenario 2. The 

benefit of the analysis is that the desired values of 

𝑁′ and T under a specific increased amount in 

RMS MD (in percent) are also obtained and 

plotted in Fig. 23 (𝑡𝑓 =5 s).  Figure 24 shows the 

optimum values of 𝑁′ and T versus the final time 

for the two scenarios using the grid search method. 

 

a) Scenario 1  

 

b) Scenario 2  

Figure 23. Optimum values for 𝑁′ and T, and their 

values for 1,5,10,20,50,100%  increased RMS miss  

with respect to 𝜎min (𝑡𝑓 =5 s) 

 

Figure 24. Comparison of 𝑁′∗ and 𝑇∗ for the two 

scenarios  

To go further analytically, a relation for the case of  

maneuvering target with uniformly distributed 

starting time is obtained using curve fitting, that is 

(𝑁′ ≥ 2.6),  

 𝜎̂𝑛𝑇
2 (𝑁′, 𝑥)= 

𝜎𝑛𝑇
2

(𝑛𝑇 𝑇2)2 =  
0.085

𝑥 (𝑁′−2.32)2 (20) 

where 𝑥 = 𝑡𝑓/𝑇 as mentioned before. The accuracy 

of the preceding relation is shown in Fig. 25 for 

different values of 𝑁′ ≥ 2.8. By substitution of the 

obtained approximate relations in Eq. (19), we 

have 

𝜎2(𝑁′, 𝑇) =
0.085 𝑛𝑇

2  𝑇5

𝑡𝑓 (𝑁′ − 2.32)2 +
1

𝑇
(0.864 𝑁′ 

−0.541) ∅GL + (0.0295 𝑁′ + 0.194) ∅FN 𝑇 𝑣𝑐
2 

+
1

𝑅𝐴
2 (0.099 𝑁′ + 0.826) ∅RN 𝑇3𝑣𝑐

4  

(21) 
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Figure 25. RMS miss distance due to random target 

maneuver versus flight time in normalized form (solid 

lines: numerical solution; dotted lines: curve fitting) 

When the design variable is only the effective 

navigation ratio, the optimum 𝑁′ is derived as 

follows:   
𝜕𝜎2

𝜕𝑁′ =  
𝜕𝜎𝑛𝑇

2

𝜕𝑁′ + 
𝜕𝜎GL

2

𝜕𝑁′ +  
𝜕𝜎FN

2

𝜕𝑁′  +
𝜕𝜎RN

2

𝜕𝑁′  (22) 

𝜕𝜎2

𝜕𝑁′ =
−0.17

𝑡𝑓(𝑁′ − 2.32)3  𝑛𝑇
2  𝑇5 +

0.864

𝑇
∅GL  

+ 0.0295 ∅FN 𝑇𝑣𝑐
2 +

0.099

𝑅𝐴
2 ∅RN 𝑇3𝑣𝑐

4  

(23) 

Hence, the optimum value is given by 

𝑁′ = 2.32 + 

 

√
17 𝑛𝑇

2 𝑇6 /𝑡𝑓 

 86.4∅GL + 2.95∅FN 𝑇2𝑣𝑐
2 +

9.9

𝑅𝐴
2  ∅RN 𝑇4𝑣𝑐

4

3

 
(24) 

The optimum value of 𝑁′, according to the 

preceding relation, is plotted in Figs. 26 and 27 for 

Scenario1 and Scenario 2 (𝑡𝑓=2,4 s), respectively.  

 

𝑎)      𝑡𝑓 = 2 (s) 

 

𝑏)      𝑡𝑓 = 4 (s) 

Figure 26. Comparison of numerical solution 

with approximate formula for 𝑁′∗ and 𝜎min 

versus T for Scenario 1 

 

Its associated standard deviation is calculated from 

Eq. (21). These results are compared to the exact 

solution, obtained numerically. As seen in these 

figures, the accuracy of the approximate formula is 

decent for 𝑡𝑓=4 s when 0.3<T<0.9; however, it is 

case dependent. For 𝑡𝑓=2 s, the approximate 

formula is still good for optimization with two 

variables (𝑁′, T). For this case, the following 

relation is also needed: 
𝜕𝜎2

𝜕𝑇
=  

𝜕𝜎𝑛𝑇
2

𝜕𝑇
+ 

𝜕𝜎GL
2

𝜕𝑇
+  

𝜕𝜎FN
2

𝜕𝑇
 +

𝜕𝜎RN
2

𝜕𝑇
 (25) 

Substitution yields, 
𝜕𝜎2

𝜕𝑇
=

5(0.085)𝑛𝑇
2  𝑇4

𝑡𝑓(𝑁′ − 2.32)2 −
1

𝑇2  (0.864 𝑁′ − 0.541)∅GL 

+ (0.0295 𝑁′ + 0.194)∅FN 𝑣𝑐
2         

+
3

𝑅𝐴
2 (0.099𝑁′ + 0.826)∅RN 𝑇2𝑣𝑐

4  (26) 

The preceding relation is set to zero, and then the  

 

𝑎)      𝑡𝑓 = 2 (s) 
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𝑏)      𝑡𝑓 = 4 (s) 

Figure 27. Comparison of approximate formula 

with numerical solution for 𝑁′∗ and 𝜎min versus 

T for Scenario 2 

effective navigation ratio in Eq. (26) is replaced by 

Eq. (24) resulting in a transcendental equation in 

terms of 𝑇∗. Another way is to solve Eq. (21) for a 

range of values of T after replacing 𝑁′ by Eq. (24), 

so the minimum value can be determined 

numerically. As an advantage of the second way, 

this range of values of T begins with the minimum 

possible value of system time constant.   

The accuracy of the approximate formula is more 

investigated and the results are compared in Table 

1 with the exact solution, obtained numerically. 

The approximate formula gives a good results for 

𝑡𝑓 > 4 s both in 𝑁′∗ and 𝑇∗; however, the results are 

also acceptable for 𝑡𝑓 ≥ 1 because the values of 

standard deviation of the both methods are very 

close, as seen in Table 1. 

Table 1. Accuracy of the approximate formulas (24) 

and (26) for Scenario 2 

 Numerical Solution Approximate Formulas 

𝑡𝑓 (s) 𝑁′∗ 𝑇∗(s) 𝜎min(m) 𝑁′∗ 𝑇∗ 𝜎min 

1 4.482 0.601 3.7075 3.432 0.399 3.7532 

1.5 4.925 0.686 3.6154 3.426 0.426 3.6758 

2 4.284 0.610 3.5512 3.422 0.446 3.5938 

2.5 3.849 0.550 3.5106 3.418 0.462 3.5304 

3 3.643 0.524 3.4745 3.414 0.475 3.4824 

3.5 3.539 0.515 3.4406 3.411 0.487 3.4436 

4 3.484 0.514 3.4091 3.407 0.497 3.4102 

4.5 3.453 0.516 3.3801 3.404 0.506 3.3805 

5 3.431 0.521 3.3535 3.401 0.515 3.3537 

6 3.414 0.531 3.3068 3.396 0.529 3.3069 

7 3.405 0.542 3.2671 3.391 0.542 3.2672 

8 3.398 0.553 3.2329 3.386 0.553 3.2330 

9 3.394 0.562 3.2029 3.381 0.562 3.2030 

10 3.39 0.571 3.1763 3.377 0.571 3.1764 

12 3.382 0.586 3.1308 3.369 0.587 3.1309 

15 3.372 0.605 3.0761 3.358 0.606 3.0763 

20 3.357 0.631 3.0075 3.343 0.631 3.0076 

30 3.332 0.667 2.9144 3.317 0.667 2.9146 

50 3.294 0.712 2.8034 3.279 0.712 2.8036 

100 3.230 0.773 2.6644 3.215 0.773 2.6645 

Approximate Formula for T* 

Since the glint noise is the dominant noise source, 

an explicit approximate formula for the optimum 

time constant can be obtained as follows:  

𝑇∗2
=

(𝑐1 𝑁0 + 𝑐0)

3 𝑐𝑇
1

3⁄
(

2

𝑐1
)

2
3⁄

 (
𝑡𝑓 ∅GL

𝑛𝑇
2 )

1
3⁄

 (27) 

𝑁′∗
=

5

3
𝑁0 +

2 𝑐0

3 𝑐1
 (28) 

where 𝑐0, 𝑐1, 𝑁0, and 𝑐𝑇 are constants and defined 

as follows: 

𝑘GL
2 (𝑁′) = 𝑐1 𝑁′ + 𝑐0 (29) 

𝜎̂𝑛𝑇
2 (𝑁′, 𝑥)= 

𝜎𝑛𝑇
2

(𝑛𝑇 𝑇2)2 =  
𝑐𝑇

𝑥 (𝑁′−𝑁0)2 (30) 

 

For this case, the optimum value of 𝑁′ has been 

obtained as a constant according to Eq. (28) using 

the equations obtained by curve fitting for the glint 

noise and target maneuver (∅FN = 0 , ∅RN = 0).  

For example, Eqs. (27) and (28) for Scenario 2 are 

given by (∅FN = 0 , ∅RN = 0)  

𝑇∗2
= 1.9415 (

𝑡𝑓 ∅GL

𝑛𝑇
2 )

1
3⁄

 

 

(31) 

𝑁′∗
= 3.449                          

 
(32) 

The obtained results for the approximate solution 

and the exact solution can be viewed in Table 2 for 

Scenario 2 when ∅FN = 0 and ∅RN = 0. Moreover, 

the optimum values and their values for 

1,5,10,20,50,100% increased RMS miss with 

respect to 𝜎min are seen in Fig. 28 when 𝑡𝑓 =4 s. 

The optimum 𝑁′ is shown  in Fig. 29 for a given 

time constant, and compared to the exact solution 

at 𝑡𝑓 =4 s when ∅FN = 0  and  ∅RN = 0. 

The optimum values of 𝑁′ and T, obtained from 

Eqs. (27) and (28), are also plotted in Fig. 30 for 

𝑡𝑓 > 1 s, and compared to the exact solution. As 

seen in Fig. 30, although the accuracy of 𝑁′∗
 and 

𝑇∗ are not good for 1 < 𝑡𝑓 < 3.5 s, but the RMS 

miss is within the 3% region according to Table 2 

and Fig. 28. 

    As a modification, the optimum effective 

navigation ratio can be computed using Eqs. (24) 

and (31), that is, 

𝑇∗2
= 1.9415 (

𝑡𝑓 ∅GL

𝑛𝑇
2 )

1
3⁄

 

 

(33) 

𝑁′∗
= 2.32 + 𝑇∗2

× (34) 
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 √
17 𝑛𝑇

2 /𝑡𝑓 

 86.4∅GL + 2.95∅FN 𝑇∗2
𝑣𝑐

2 +
9.9

𝑅𝐴
2  ∅RN 𝑇∗4

𝑣𝑐
4

3

 

The accuracy of the preceding formulas is shown 

in Fig. 31 and compared with the exact solution 

and approximate formulas (24) and (26). The 

results can be viewed in Table 3 for several final 

times. As the results show, the modification 

slightly improves the results for 𝑡𝑓 < 5 s. For a 

better accuracy, the coefficients 𝑐𝑇 and 𝑁0 can be 

determined by a lookup table.  

 

Table 2. Accuracy of the approximate formulas (31) 

and (32) for Scenario 2 (∅FN = 0 , ∅RN = 0) 

 Numerical Solution Approximate Formulas 

𝑡𝑓 (s) 𝑁′∗ 𝑇∗(s) 𝜎min(m) 𝑁′∗ 𝑇∗ 𝜎min 

1 6.872 0.981 3.6767 3.449 0.402 3.7466 

1.5 6.645 0.995 3.5719 3.449 0.430 3.6672 

2 4.574 0.670 3.5291 3.449 0.451 3.5834 

2.5 3.943 0.571 3.4960 3.449 0.468 3.5191 

3 3.697 0.537 3.4621 3.449 0.483 3.4708 

3.5 3.583 0.525 3.4289 3.449 0.495 3.4319 

4 3.524 0.523 3.3974 3.449 0.507 3.3984 

4.5 3.493 0.526 3.3682 3.449 0.517 3.3685 

5 3.475 0.531 3.3412 3.449 0.526 3.3413 

6 3.461 0.543 3.2936 3.449 0.542 3.2936 

7 3.458 0.555 3.2528 3.449 0.556 3.2529 

8 3.458 0.567 3.2176 3.449 0.569 3.2177 

9 3.459 0.579 3.1866 3.449 0.580 3.1867 

10 3.460 0.589 3.1590 3.449 0.590 3.1592 

12 3.463 0.607 3.1117 3.449 0.608 3.1119 

15 3.466 0.631 3.0547 3.449 0.631 3.0549 

20 3.468 0.662 2.9825 3.449 0.662 2.9827 

30 3.471 0.709 2.8836 3.449 0.709 2.8838 

50 3.473 0.773 2.7635 3.449 0.772 2.7637 

100 3.476 0.868 2.6085 3.449 0.866 2.6087 

 

Figure 28. Optimum values for 𝑁′ and T, and their 

values for 1, 5,10,20,50% increased RMS miss w.r.t 

𝜎min for Scenario 2 at 𝑡𝑓 =4 s (∅FN = 0 , ∅RN = 0) 

 

 

Figure 29. Comparison of approximate formula (24) 

with numerical solution for a given time constant 

when 𝑡𝑓 =4 s (∅FN = 0 , ∅RN = 0) 

 
Figure 30. Comparison of approximate formulas 

(27) and (28) with numerical solution for Scenario 2 

(∅FN = 0 , ∅RN = 0) 
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b) 

Figure 31. Comparison of approximate formulas with 

exact solution for scenario 2 

 

Table 3. Accuracy of the approximate formulas (33) 

and (34)  for Scenario 2 

 Numerical Solution Approximate Formulas 

𝑡𝑓 (s) 𝑁′∗ 𝑇∗(s) 𝜎min(m) 𝑁′∗ 𝑇∗ 𝜎min 

1 4.482 0.601 3.7075 3.4489 0.402 3.7517 

1.5 4.925 0.686 3.6154 3.4489 0.430 3.6735 

2 4.284 0.610 3.5512 3.4488 0.451 3.5908 

2.5 3.849 0.550 3.5106 3.4487 0.468 3.5275 

3 3.643 0.524 3.4745 3.4486 0.483 3.4801 

3.5 3.539 0.515 3.4406 3.4486 0.495 3.4420 

4 3.484 0.514 3.4091 3.4485 0.507 3.4093 

4.5 3.453 0.516 3.3801 3.4485 0.517 3.3801 

5 3.431 0.521 3.3535 3.4484 0.526 3.3537 

6 3.414 0.531 3.3068 3.4483 0.542 3.3073 

7 3.405 0.542 3.2671 3.4482 0.556 3.2678 

8 3.398 0.553 3.2329 3.4481 0.569 3.2337 

9 3.394 0.562 3.2029 3.4480 0.580 3.2039 

10 3.39 0.571 3.1763 3.4480 0.590 3.1774 

12 3.382 0.586 3.1308 3.4478 0.608 3.1321 

15 3.372 0.605 3.0761 3.4476 0.631 3.0778 

20 3.357 0.631 3.0075 3.4472 0.662 3.0098 

30 3.332 0.667 2.9144 3.4466 0.709 2.9178 

50 3.294 0.712 2.8034 3.4456 0.772 2.8093 

100 3.230 0.773 2.6644 3.4436 0.866 2.6763 

Conclusions 

This study provides a complete miss distance 

analysis of TPN as a bench mark and has some 

contributions to a systematic way for miss distance 

analysis of two-point guidance laws. However, our 

results are valid for a first-order control system 

without acceleration limit, but the description of its 

behavior gives more insight to the guidance 

designers. It is important to note that the worst 

miss distance of TPN is reduced by increasing the 

value of the effective navigation ratio due to 

heading error or step target acceleration (checked 

for the effective navigation ratio ≤20); however, 

this behavior is not seen for a fifth-order binomial 

control system which has a minimum value of 3.75 

(or 4.55) due to HE (or step target maneuver). 

In addition, an approximate formula is obtained for 

miss distance budget for a step target maneuver 

with a random starting time in the presence of 

seeker noise sources using the curve fitting 

method. Therefore, an explicit formula is obtained 

for the optimum effective navigation ratio in order 

to minimize the RMS miss for a specified value of 

system time constant. For the optimization with 

two variables (the effective navigation ratio and 

system time constant), the above mentioned 

formula is also preferred to the solving of a 

transcendental equation in terms of the system 

time constant. Moreover, an approximate formula 

for the optimum time constant is derived when the 

glint noise is the dominant seeker noise source. 

Appendix A: MD formulas due to HE 

Miss distance formulas are simply written from 

Eq. (7) or Eq. (8) for integer values of 𝑁′ due to 

heading error, that is,  
MD

−𝑇𝑣𝑀HE
|

𝑁′=2

= 𝑒
−𝑥

𝑄
2

                                                                  (A1) 

 
2MD

−𝑇𝑣𝑀HE
|

𝑁′=3

= − 𝑒
−𝑥

𝑄
3

                                                             (A2) 

 

6MD

−𝑇𝑣𝑀HE
|

𝑁′=4

= 𝑒
−𝑥

𝑄
4

                                                                  (A3) 

 

24MD

−𝑇𝑣𝑀HE
|

𝑁′=5

= − 𝑒
−𝑥

𝑄
5

                                                             (A4) 

 

120MD

−𝑇𝑣𝑀HE
|

𝑁′=6

= 𝑒
−𝑥

𝑄
6
                                                                 (A5) 

 

 
720MD

−𝑇𝑣𝑀HE
|
𝑁′=7

= − 𝑒−𝑥𝑄7                                                              (A6) 

 

5040MD

−𝑇𝑣𝑀HE
|

𝑁′=8

= 𝑒
−𝑥

𝑄
8

                                                                  (A7) 

 

where 𝑥 = 𝑡𝑓/𝑇 and 

𝑄2 = 𝑥 

 

𝑄3 = 𝑥2 − 2𝑥 

 

𝑄4 = 𝑥3 − 6𝑥2 + 6𝑥 

 

𝑄5 = 𝑥4 − 12𝑥3 + 36𝑥2 − 24𝑥                                   

 

𝑄6 = 𝑥5 − 20𝑥4 + 120𝑥3 − 240𝑥2 + 120𝑥                                 (A8) 

 
𝑄7 = 𝑥6 − 30𝑥5 + 300𝑥4 − 1200𝑥3 + 1800𝑥2 − 720𝑥 
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𝑄8 = 𝑥7 − 42𝑥6 + 630𝑥5 − 4200𝑥4 + 12600𝑥3 − 15120𝑥2

+ 5040𝑥 

Appendix B: MD formulas due to step target 

maneuver 

Miss distance formulas are written from Eq. (9) or 

Eq. (10) for integer value of 𝑁′ due to a step target 

maneuver, that is,  
MD

𝑛𝑇𝑇2
|

𝑁′=2

= 1 − 𝑒
−𝑥

𝐺2                                                                   (B1) 

 

2MD

𝑛𝑇𝑇2
|

𝑁′=3

= 𝑒
−𝑥

𝐺3                                                                           (B2) 

 

6MD

𝑛𝑇𝑇2
|

𝑁′=4

= −𝑒
−𝑥

𝐺4                                                                        (B3) 

 

24MD

𝑛𝑇𝑇2
|

𝑁′=5

= 𝑒
−𝑥

𝐺5                                                                        (B4) 

 

120MD

𝑛𝑇𝑇2
|

𝑁′=6

= −𝑒
−𝑥

𝐺6                                                                   (B5) 

 
720MD

𝑛𝑇𝑇2
|

𝑁′=7

= 𝑒
−𝑥

𝐺7                                                                     (B6) 

 

5040MD

𝑛𝑇𝑇2
|

𝑁′=8

= − 𝑒
−𝑥

𝐺8                                                               (B7) 

 

where 
 
𝐺2 = 𝑥 + 1 
 
𝐺3 = 𝑥2 
 
𝐺4 = 𝑥3 − 3𝑥2 
 
𝐺5 = 𝑥4 − 8𝑥3 + 12𝑥2                                                                        (B8) 
 
𝐺6 = 𝑥5 − 15𝑥4 + 60𝑥3 − 60𝑥2                                             
 
𝐺7 = 𝑥6 − 24𝑥5 + 180𝑥4 − 480𝑥3 + 360𝑥2 
 
𝐺8 =  𝑥7 − 35𝑥6 + 420𝑥5 − 2100𝑥4 + 4200𝑥3 − 2520𝑥2 

Appendix C: RMS miss formulas due to HE  

The mean square miss over the interval [0   𝑡𝑓2] is 

the integral of the 𝑡𝑓-MD2 curve divided by 𝑡𝑓2. 

Therefore, the solutions are obtained from Eqs. 

(A1-A7) for integer values of 𝑁′ due to a step 

target maneuver, that is,  

 

RMS MD

𝑇𝑣𝑀|HE|
|
𝑁′=2

=
1

2
√

1 + 𝑒−2𝑥𝑊2

𝑥
                                                 (C1) 

RMS MD

𝑇𝑣𝑀|HE|
|

𝑁′=3

=
1

4
 √

1 + 𝑒−2𝑥𝑊3

𝑥
                                                (C2) 

 

RMS MD

𝑇𝑣𝑀|HE|
|
𝑁′=4

=
1

24
√

18 + 𝑒−2𝑥𝑊4

𝑥
                                            (C3) 

 

RMS MD

𝑇𝑣𝑀|HE|
|
𝑁′=5

=
1

48
√

45 + 𝑒−2𝑥𝑊5

𝑥
                                            (C4) 

 

RMS MD

𝑇𝑣𝑀|HE|
|
𝑁′=6

=
1

480
√

3150 + 𝑒−2𝑥𝑊6

𝑥
                                    (C5) 

 

RMS MD

𝑇𝑣𝑀|HE|
|
𝑁′=7

=
1

2880
√

85050 + 𝑒−2𝑥𝑊7

𝑥
                               (C6) 

RMS MD

𝑇𝑣𝑀|HE|
|
𝑁′=8

=
1

20160
√

3274425 + 𝑒−2𝑥𝑊8

𝑥
                        (C7) 

where 
 

𝑊2 = −2𝑥2 − 2𝑥 − 1 

 

𝑊3 = −2𝑥4 + 4𝑥3 − 2𝑥2 − 2𝑥 − 1 

 
𝑊4 = −8𝑥6 + 72𝑥5 − 204𝑥4 + 168𝑥3 − 36𝑥2 − 36𝑥 − 18 

 

𝑊5 = −2𝑥8 + 40𝑥7 − 292𝑥6 + 948𝑥5 − 1374𝑥4

+708𝑥3 − 90𝑥2 − 90𝑥 − 45
                      (C8) 

 
𝑊6 = −8𝑥10 + 280𝑥9 − 3860𝑥8 + 26800𝑥7 − 100120𝑥6

+198840𝑥5 − 194100𝑥4 + 72600𝑥3

−6300𝑥2 − 6300𝑥 − 3150

 

 

𝑊7 = −8𝑥12 + 432𝑥11 − 9624𝑥10 + 115080𝑥9 − 806940𝑥8             

+3407760𝑥7 − 8578440𝑥6 + 12280680𝑥5 − 9042300𝑥4

+2651400𝑥3 − 170100𝑥2 − 170100𝑥 − 85050

 

 

𝑊8 = −8𝑥14 + 616𝑥13 − 20188𝑥12 + 369432𝑥11 − 4167324𝑥10 

+30208500𝑥9 − 142431030𝑥8 + 432792360𝑥7

−822173940𝑥6 + 920358180𝑥5 − 544083750𝑥4

+131109300𝑥3 − 6548850𝑥2 − 6548850𝑥
−3274425

 

Appendix D: RMS miss formulas due to step 

target maneuver with a random starting time 

For this case, the RMS miss formulas over the 

interval [0   𝑡𝑓2] are derived as follows: 

RMS MD

|𝑛
T

| 𝑇2
|

𝑁′=2

=
1

2
√

𝑍2

𝑥
                                                                 (D1) 
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RMS MD

|𝑛
T

| 𝑇2
|

𝑁′=3

=
1

4
√

3 + 𝑒−2𝑥𝑍3

𝑥
                                              (D2) 

RMS MD

|𝑛
T

| 𝑇2
|

𝑁′=4

=
1

24
√

18 + 𝑒−2𝑥𝑍4

𝑥
                                         (D3) 

RMS MD

|𝑛
T

| 𝑇2
|

𝑁′=5

=
1

48
√

27 + 𝑒−2𝑥𝑍5

𝑥
                                         (D4) 

RMS MD

|𝑛
T

| 𝑇2
|

𝑁′=6

=
1

480
√

1350 + 𝑒−2𝑥𝑍6

𝑥
                                 (D5) 

RMS MD

|𝑛
T

| 𝑇2
|

𝑁′=7

=
1

2880
√

28350 + 𝑒−2𝑥𝑍7

𝑥
                            (D6) 

RMS MD

|𝑛
T

| 𝑇2
|

𝑁′=8

=
1

20160
√

893025 + 𝑒−2𝑥𝑍8

𝑥
                       (D7) 

where 

 
𝑍2 = 𝑒−2𝑥(−2𝑥2 − 6𝑥 − 5) + 𝑒−𝑥(8𝑥 + 16) + 4𝑥 − 11 

 

𝑍3 = −2𝑥4 − 4𝑥3 − 6𝑥2 − 6𝑥 − 3 

 

𝑍4 = −8𝑥6 + 24𝑥5 − 12𝑥4 − 24𝑥3 − 36𝑥2 − 36𝑥 − 18          (D8) 

 

𝑍5 = −2𝑥8 + 24𝑥7 − 92𝑥6 + 108𝑥5 − 18𝑥4 − 36𝑥3 − 54𝑥2

− 54𝑥 − 27 

 

𝑍6 = −8𝑥10 + 200𝑥9 − 1860𝑥8 + 7920𝑥7 − 15480𝑥6 

+11160𝑥5 − 900𝑥4 − 1800𝑥3 − 2700𝑥2 − 2700𝑥 − 1350 

 

𝑍7 = −8𝑥12 + 336𝑥11 − 5640𝑥10 + 48600𝑥9 − 230580𝑥8

+598320𝑥7 − 785880𝑥6 + 407160𝑥5 − 18900𝑥4

−37800𝑥3 − 56700𝑥2 − 56700𝑥 − 28350
 

 

𝑍8 = −8𝑥14 + 504𝑥13 − 13244𝑥12 + 189336𝑥11 − 1613052𝑥10

+8439060𝑥9 − 26939430𝑥8 + 50296680𝑥7

−49753620𝑥6 + 20083140𝑥5 − 595350𝑥4

−1190700𝑥3 − 1786050𝑥2 − 1786050𝑥
−893025
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