Document Type : Original Article

Authors

Faculty of Electrical & Computer Engineering, Malek Ashtar University of Technology, Tehran, Iran.

Abstract

This study proposes a new non-linear guidance law for a Falcon 9 missile booster landing's terminal phase using a non-linear vectorized high expansion method. For this purpose, At first, the dynamic modeling of the landing problem is presented, assuming mass, gravity, and density are variables. Then, sensitivity variables are extracted using the vectorized high order expansion method and assuming the parameters constant. Then, the guidance law is extracted to update the path and optimal commands using sensitivity variables. The path and commands of the near-optimal guidance are extracted online using the proposed guidance law. Considering initial deviations, the guidance law performance in simulations are studied using a combination of various initial deviations. The results shown as charts and numerical values of errors indicate that the landing point errors are insignificant, and the vectorized high order expansion method has a desirable performance for the reusable booster's vertical landing.

Keywords

Main Subjects

[1] A. Banerjee and R. Padhi, “An optimal explicit guidance algorithm for terminal descent phase of lunar soft landing,” AIAA Guid. Navig. Control Conf. 2017, no. January, pp. 1–12, 2017, doi: 10.2514/6.2017-1266.
[2] S. Swaminathan, U. P. Rajeev, and D. Ghose, “Real time powered descent guidance algorithm for mars pinpoint landing with inequality constraints,” AIAA Scitech 2020 Forum, vol. 1 PartF, no. January, pp. 1–21, 2020, doi: 10.2514/6.2020-1351.
[3] K. S. G. Anglim, Z. Zhang, and Q. Gao, “Minimum - Fuel Optimal Trajectory for Reusable First - Stage Rocket Landing Using Particle Swarm Optimization,” Int. J. Mech. Mechatronics Eng., vol. 11, no. 5, pp. 981–990, 2017.
[4] Y. Li, W. Chen, H. Zhou, and L. Yang, “Conjugate gradient method with pseudospectral collocation scheme for optimal rocket landing guidance,” Aerosp. Sci. Technol., vol. 104, p. 105999, 2020, doi: 10.1016/j.ast.2020.105999.
[5] V. M. Guibout and D. J. Scheeres, “Solving two-point boundary value problems using generating functions: Theory and Applications to optimal control and the study of Hamiltonian dynamical systems,” no. December, 2003, [Online]. Available: http://arxiv.org/abs/math/0310475.
[6] V. M. Guibout and D. J. Scheeres, “Solving Two-Point Boundary Value Problems Using Generating Functions: Theory and Applications to Astrodynamics,” Elsevier Astrodyn. Ser., vol. 1, pp. 53–105, 2006, doi: 10.1016/S1874-9305(07)80005-7.
[7] V. M. Guibout and D. J. Scheeres, “Solving relative two-point boundary value problems: Spacecraft formation flight transfers application,” J. Guid. Control. Dyn., vol. 27, no. 4, pp. 693–704, 2004, doi: 10.2514/1.11164.
[8] C. Park and D. J. Scheeres, “Determination of optimal feedback terminal controllers for general boundary conditions using generating functions,” Automatica, vol. 42, no. 5, pp. 869–875, 2006, doi: 10.1016/j.automatica.2006.01.015.
[9] C. Park, V. Guibout, and D. J. Scheeres, “Solving Optimal Continuous Thrust Rendezvous Problems with Generating Functions,” J. Guid. Control. Dyn., vol. 29, no. 2, pp. 321–331, Mar. 2006, doi: 10.2514/1.14580.
[10] H. D. Curtis, Orbital Mechanics for Engineering Students. Elsevier, 2013.
[11] K. Lee, C. Park, and S. Y. Park, “Near-optimal continuous control for spacecraft collision avoidance maneuvers via generating functions,” Aerosp. Sci. Technol., vol. 62, pp. 65–74, 2017, doi: 10.1016/j.ast.2016.11.026.
[12] Z. Hao, K. Fujimoto, and Q. Zhang, “Approximate Solutions to the Hamilton-Jacobi Equations for Generating Functions,” J. Syst. Sci. Complex., vol. 33, no. 2, pp. 261–288, 2020, doi: 10.1007/s11424-019-8334-6.
[13] P. Di Lizia, R. Armellin, and M. Lavagna, “Application of high order expansions of two-point boundary value problems to astrodynamics,” Celest. Mech. Dyn. Astron., vol. 102, no. 4, pp. 355–375, 2008, doi: 10.1007/s10569-008-9170-5.
[14] P. Di Lizia, R. Armellin, A. Ercoli-Finzi, and M. Berz, “High-order robust guidance of interplanetary trajectories based on differential algebra,” J. Aerosp. Eng. Sci. Appl., vol. 1, no. 1, pp. 43–57, Jan. 2008, doi: 10.7446/jaesa.0101.05.
[15] P. Di Lizia, R. Armellin, F. Bernelli-Zazzera, and M. Berz, “High order optimal control of space trajectories with uncertain boundary conditions,” Acta Astronaut., vol. 93, pp. 217–229, 2014, doi: 10.1016/j.actaastro.2013.07.007.
[16] P. Di Lizia, R. Armellin, A. Morselli, and F. Bernelli-Zazzera, “High order optimal feedback control of space trajectories with bounded control,” Acta Astronaut., vol. 94, no. 1, pp. 383–394, 2014, doi: 10.1016/j.actaastro.2013.02.011.
[17] A. Wittig and R. Armellin, “High order transfer maps for perturbed Keplerian motion,” Celest. Mech. Dyn. Astron., vol. 122, no. 4, pp. 333–358, 2015, doi: 10.1007/s10569-015-9621-8.
[18] M. Vetrisano and M. Vasile, “Analysis of spacecraft disposal solutions from LPO to the Moon with high order polynomial expansions,” Adv. Sp. Res., vol. 60, no. 1, pp. 38–56, 2017, doi: 10.1016/j.asr.2017.04.005.
[19] Z. J. Sun, P. Di Lizia, F. Bernelli-Zazzera, Y. Z. Luo, and K. P. Lin, “High-order state transition polynomial with time expansion based on differential algebra,” Acta Astronaut., vol. 163, no. July 2018, pp. 45–55, 2019, doi: 10.1016/j.actaastro.2019.03.068.
[20] A. Morselli, R. Armellin, P. Di Lizia, and F. Bernelli Zazzera, “A high order method for orbital conjunctions analysis: Sensitivity to initial uncertainties,” Adv. Sp. Res., vol. 53, no. 3, pp. 490–508, 2014, doi: 10.1016/j.asr.2013.11.038.
[21] A. Morselli, R. Armellin, P. Di Lizia, and F. Bernelli Zazzera, “A high order method for orbital conjunctions analysis: Monte Carlo collision probability computation,” Adv. Sp. Res., vol. 55, no. 1, pp. 311–333, 2015, doi: 10.1016/j.asr.2014.09.003.
[22] M. Moghadasian and J. Roshanian, “Optimal Landing of Unmanned Aerial Vehicle Using Vectorised High Order Expansions Method”,Modares Mechanical Engineering vol. 19, no. 11, pp. 2761–2769, 2019, [Online]. Available: http://mme.modares.ac.ir/article-15-27084-en.html.
[23] M. Moghadasian and J. Roshanian, “Continuous maneuver of unmanned aerial vehicle using High Order Expansions method for optimal control problem,” Modares Mechanical Engineering vol. 17, no. 12, pp. 382–390, 2018, [Online]. Available: http://mme.modares.ac.ir/article-15-4456-en.html.
[24] M. Moghadasian and J. Roshanian, “Approximately optimal manoeuvre strategy for aero-assisted space mission,” Adv. Sp. Res., vol. 64, no. 2, pp. 436–450, 2019, doi: 10.1016/j.asr.2019.04.003.