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The main purpose of this article is to examine the periodic coupled 

orbit-attitude of a satellite at restricted three body problem considering 

both primaries oblateness perturbations. The proposed model was 

based on a simplified coupled model meaning that the time evolution of 

the orbital state variables was not a function of the attitude state 

variables. Since, the problem has no closed-formed solution, and the 

numerical methods must be used, so the problem can have different 

periodic or non-periodic responses to the initial conditions. The initial 

guess vector of the coupled model’s states was introduced to achieve 

the optimal initial conditions leading to the periodic responses, and 

then the P-CR3BP coupled orbit-attitude correction algorithm was 

proposed to correct this initial guess. Since, the number of periodic 

solutions is restricted; the suitable initial guess vector as the inputs of 

the coupled orbit-attitude correction algorithm increases the chances 

of achieving more accurate initial conditions. The initial guess of 

orbital states close to the initial conditions of the P-CR3BP periodic 

orbit, along with initial guess vector of attitude dynamics states with 

Poincaré mapping was suggested as the suitable initial guess vector of 

the coupled model. 
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Introduction 

Today, space agencies are increasingly using 

multi-body dynamic structures for their missions. 

These missions are carried out with objectives 

such as astronomical observations [1-3], 

preparation of human habitats in space, improving 

the accuracy of pointing on space telescopes and 

connection [4] to the space station. When the 

spacecraft is placed in the multi-body orbital 

regime and is coupled with it, it may show 

complex behavior. The problem of three circular 

limited bodies can be a suitable approximation of 

the mentioned multi-body structures in which the 

spacecraft floats in the gravitational field of two 

main planets and its presence does not affect the 

movement of the main attractors. Considering the 

mass of the spacecraft is insignificant compared to 
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the mass of the main absorbers, the reason for the 

lack of influence of the motion of these absorbers 

from the spacecraft. Therefore, expressing the 

fundamental behaviors of the orbit-state coupling 

problem in this research requires a correct 

understanding of the state dynamics of the space 

vehicle when it is coupled with the orbital regime 

of the problem of three circular bounded bodies. 

Considering the mentioned orbital regime, the 

initial research by Kane and Marsh was done on 

the positional dynamics of satellites with different 

bodies [4-6]. In this research, it was assumed that 

the satellites were artificially placed in the 

equilibrium points of the three-body system. 

Further, studies on this field led to the introduction 

of Euler's parameters, quaternions and Poincaré 

mapping in the expression of satellite state 

dynamics. In these studies, it was assumed that the 
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satellite is placed on the Lagrangian points of the 

three-body problem [7]. Wong, Patil and Misra 

investigated the effect of the gravitational torque 

on the spacecraft in orbits around the equilibrium 

points of the Earth-Sun system [8]. They used the 

Lyapanov circuits as reference trajectories 

expressed linearly for their research. Another 

simplification of this problem was made by using 

Hill's equations for dumbbell-shaped satellites that 

were placed in the Lyapanov orbits of the Earth-

Moon system [9]. The application of Hill's 

problem in this research was limited to the 

condition of proximity of the spacecraft to the 

smaller main attractor. Gazzetti investigated the 

state-orbit Kopplink problem numerically by 

considering Lyapanov orbits as the reference path. 

In his research, the reference paths were expressed 

in a non-linear way, but the rotation of the satellite 

was limited to the orbital plane [10-12]. The use of 

Poincaré mapping in identifying the initial 

conditions of the situational parameters in order to 

meet the alternate answers of the satellite's 

situation, in addition to the appropriate accuracy, 

has the advantage of reducing the dimensions of 

the system to the dimensions of interest in the 

study and will also avoid complex mathematical 

calculations. Periodic and quasi-periodic 

structures in this sample of problems can be useful 

in maintaining the station or transmitting data 

continuously. In consideration of alternating 

responses, they can contribute to the understanding 

of the satellite's positional dynamics when coupled 

with the three-body orbital regime. In the general 

case, the matching of the starting point and the end 

point of the solution in terms of time are known as 

alternating responses. Considering the mentioned 

conditions will lead to a kind of simplification, 

according to which, the double boundary condition 

problem will be transformed into a single 

boundary condition problem. Adding spatial 

disturbances will be efficient in modeling the 

environment of the problem as accurately as 

possible. Singh performed orbital analysis in the 

regime of three circular bodies by considering the 

cooked Earth in the Earth-Moon system [13]. 

Sirvastava and Kumar performed the orbits of the 

system of three circumscribed bodies in the 

presence of the earth's curvature and the effects of 

the sun's radiation pressure in the earth-sun system 

[14]. They used Lagrangian mechanics in their 

research to obtain the equations of orbital motion. 

Marklos and Papadakis studied the nonlinear 

stability of the satellite around the Lagrangian 

points of the Earth-Moon system by considering 

the perturbation of the Earth's curvature [15]. This 

research was completed by Singh by considering 

spacecraft with variable mass [16]. Orbital 

analyzes in the problem of three limited circular 

bodies by considering the disturbances of the 

bigger planet's maturation, solar radiation pressure 

and considering the effect of the fourth body are 

worth mentioning in this context [17-19]. It should 

be noted that in all these researches, the effect of 

spatial disturbances has been investigated only on 

the problem of orbital motion. The main goal of 

this article is to find the alternating mode 

responses of the satellite in the alternating 

Lyapanov orbits of the problem of three circular 

bounded bodies in the presence of cooking 

disturbances. Since the studied problem does not 

have any closed-loop solution, therefore it is 

necessary to use numerical methods, so the 

problem can have non-alternating solutions or Be 

intermittent. In this regard, Poincaré mapping will 

be used to identify the appropriate initial 

conditions of the situational parameters. The 

islands formed in the maps created by the Poincaré 

mapping are identified as appropriate initial 

guesses of the state dynamic state parameters. 

Also, the initial conditions of the orbital state 

parameters in the turbulent environment will be 

chosen near the initial conditions of the Lyapanov 

orbits identified in the research of Abbasei et al. 

[20,21]. Investigating the impact of disturbances 

will lead to a better understanding of the natural 

movement of the satellite, which will have an 

impact on the success of a mission. First, in section 

2, we will introduce the frameworks needed to 

describe the problem. Then, in section 3, the 

equations of the satellite's orbital motion in the 

circular bounded body problem in the presence of 

the perturbations of both main planets will be 

derived using Lagrangian mechanics. Also, the 

equations of state motion will be described using 

Newton's second law in the form of angular 

velocity in section 4.  

Requirements frames 

When the two main attractors move on a certain 

circular orbit, it is possible to define the 

coordinates that are constant with respect to their 

movement. The center of the said coordinates is 

located at the center of mass of the main absorbers 

and this coordinate rotates with a constant angular 

velocity Ω, which is equal to the average 

movement of the main absorbers. These 

coordinates, which are known as rotating 
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coordinates, are defined by the vectors r(𝑥, �̂�, �̂�)  in 

such a way that its �̂�  component is perpendicular 

to the plane of movement of the main attractors 

and objects. m1 and m2 always remain on the 

vector x ̂ these coordinates. Also, the inertial 

coordinates 𝑰(�̂�, �̂�, �̂�)are defined in such a way 

that at the initial time t=0 it is parallel to the 

rotating coordinates and its vector �̂� is always in 

the direction of the vector z ̂ coordinates The rotor 

should be parallel and perpendicular to the plane 

of movement of the main attractors. Also, a 

physical coordinate connected to the body of the 

satellite is needed, which is represented by the 

vectors 𝒃(�̂�1, �̂�2, �̂�3)Figure 1 shows the defined 

coordinates. 

 
Fig1. CRTB requirement frames  

Orbital equation of motion 

Consider two flat planets with masses m1 and m2 

that move in a circular orbit only under the 

influence of mutual gravity (m1>m2). We have 

added a satellite with a very small mass compared 

to the mass of the mature planets to the mentioned 

system and we are interested in describing its 

motion equations in the description system. Abbas 

Ali et al. derived the equations of satellite orbital 

motion in the problem of three bounded circular 

bodies in the presence of perturbations of the main 

planets [20, 21]. In their research, they considered 

the regional harmonic effect of the planets. For this 

reason, in this article, further explanations about 

the process of deriving these equations are avoided 

and it is directly mentioned to the equations given 

in the mentioned reference that these equations 

will be written in the dimensionless form as 

follows: 

 �̈� = 𝑛2𝑥 + 2𝑛𝑣𝑦

+ 𝜇(𝜇 + 𝑥

− 1)𝑅∗

− (𝜇 − 1)(𝑥

+ 𝜇)𝐷∗ 

(1) �̈� = 𝑛2𝑦 − 2𝑛𝑣𝑥 + 𝜇𝑦𝑅∗

− (𝜇 − 1)𝑦𝐷∗ 

 �̈� = 𝜇𝑧𝑅∗ − (𝜇 − 1)𝑧𝐷∗ 

In the group of equations, R* and D* are equal to: 

(2) 
𝑅∗ = [

1

𝑟3
+

3𝐴2
(2)

2𝑟5 ] 

 
𝐷∗ = [

1

𝑑3
+

3𝐴2
(1)

2𝑑5 ] 

 

𝑑 =  √(𝑥 + 𝜇)2 + 𝑦2 + 𝑧2 

𝑟 =  √(𝑥 − 1 + 𝜇)2 + 𝑦2 + 𝑧2 

(3) 

Also 𝜇 =
𝑚2

𝑚1+𝑚2
 representative of the mass 

constant and the average amount of movement will 

be obtained from the following relationship [22]. 

𝑛 =  √1 + 3(𝐽2
(1)

+ 𝐽2
(2)

)   
(4) 

The second regional harmonics of the planets are 

denoted by symbols 𝐽2
(1)

 and 𝐽2
(2)

. The flattening 

coefficients of these planets are indicated by the 

symbols 𝐴2
(1)

  and 𝐴2
(2)

 , which for each planet is 

equal to the product of the second regional 

harmonic multiplied by the square of the equatorial 

radius. 

Attitude dynamics: 

The fundamental equations of rotational motion of 

a rigid body can be derived using Newton's second 

law in the form of angular velocity. The vector of 

external torques applied to the body of the rigid 

satellite, expressed in the body frame 𝑏 ̂ which is 

connected to the body of the rigid body relative to 

the inertial frame, can be written as 

(5) 

 
𝑴𝐵  =  𝑀1�̂�1 + 𝑀2�̂�2 + 𝑀3�̂�3 
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In this case, the law of angular velocity, which in 

fact represents the equations predicting the 

rotational dynamics of a rigid body around its 

center, will be written as follows [23,24]: 

(6) 𝐼1�̇�1 = −(𝐼3 − 𝐼2)𝜔2𝜔3 + 𝑀1 

𝐼2�̇�2 = −(𝐼1 − 𝐼3)𝜔1𝜔3 + 𝑀2 
𝐼3�̇�3 = −(𝐼1 − 𝐼1)𝜔1𝜔2 + 𝑀3 

In the system of equations (6), the symbol 𝐼𝑖  
represents the main moments of inertia 

corresponding to the body axes 𝑏 ̂_𝑖  . Also, the 

symbol 𝑀𝑖  represents the vector of external 

torques applied to the body of the satellite object. 

In this case, the equations of time rate change of 

satellite angular velocities in this problem will be 

summarized as follows [25]: 

(7) 
�̇�1 =

𝐼3 − 𝐼2
𝐼1

(
3(1 − 𝜇)

𝑑3
𝑔2𝑔3

+
3𝜇

𝑟3
ℎ2ℎ3

− 𝑤2𝑤3) 

�̇�2 =
𝐼1 − 𝐼3

𝐼2
(
3(1 − 𝜇)

𝑑3
𝑔1𝑔3

+
3𝜇

𝑟3
ℎ1ℎ3

− 𝑤1𝑤3) 

�̇�3 =
𝐼2 − 𝐼1

𝐼3
(
3(1 − 𝜇)

𝑑3
𝑔1𝑔2

+
3𝜇

𝑟3
ℎ1ℎ2

− 𝑤1𝑤2) 

where ℎ𝑖  represents the image vector that connects 

the spacecraft and the larger main attractor m1 and 

𝑔𝑖 represents the image vector that connects the 

spacecraft and the smaller main attractor m2 

expressed in the body frame. According to the 

introduction of the cosine direction matrix of the 

conductor, the vector of images ℎ𝑖 and 𝑔𝑖 is 

defined as a function of the instantaneous position 

and orientation of the satellite: 
 

 

 

(8) 

[

𝑔1

𝑔2

𝑔3

] = 𝑨�̂�.�̂�𝑨�̂�.�̂�

𝒅

𝑑

= 𝑨�̂�.�̂�𝑨�̂�.�̂�

1

𝑑
[
𝑥 + 𝜇

𝑦
𝑧

] 

[

ℎ1

ℎ2

ℎ3

] = 𝑨�̂�.�̂�𝑨�̂�.�̂�

𝒓

𝑟

= 𝑨�̂�.�̂�𝑨�̂�.�̂�

𝟏

𝑑
[
𝑥 − 1 + 𝜇

𝑦
𝑧

] 

In equations 8, the body-inertial and rotational-

inertial transfer matrices are represented by the 

symbols 𝐴𝑏 ̂ .𝑖 ̂    and 𝐴𝑖 ̂ .𝑟 ̂ , respectively. 

𝑨�̂�.�̂� = [
cos (𝑡) −sin (𝑡) 0
sin (𝑡) cos (𝑡) 0

0 0 1

] 

 

𝑨�̂�.�̂�

= [

𝑞1
2 − 𝑞2

2 − 𝑞3
2 + 𝑞4

2 2(𝑞1𝑞2 + 𝑞3𝑞4) 2(𝑞1𝑞3 − 𝑞2𝑞4)

2(𝑞1𝑞2 − 𝑞3𝑞4) −𝑞1
2 + 𝑞2

2 − 𝑞3
2 + 𝑞4

2 2(𝑞2𝑞3 + 𝑞1𝑞4)

2(𝑞1𝑞3 + 𝑞2𝑞4) 2(𝑞2𝑞3 + 𝑞1𝑞4) −𝑞1
2 − 𝑞2

2 + 𝑞3
2 + 𝑞4

2

] 

 

 

 

 

 

 

( 9) 

 

 

 

 

(10) 

where 𝑞 = [𝑞1𝑞2𝑞3𝑞4]  represents the quaternion 

vector. In order to propagate quaternions in time, 

equations (10) are used. 

 

 
(11) 

 �̇�1 =
1

2
( 𝜔3𝑞2 − 𝜔2𝑞3

+ 𝜔1𝑞4)  

�̇�2 =
1

2
(−𝜔3𝑞1 + 𝜔1𝑞3

+ 𝜔2𝑞4) 

 �̇�3 =
1

2
(𝜔2𝑞1 − 𝜔1𝑞2

+ 𝜔3𝑞4) 

�̇�3

=
1

2
(−𝜔1𝑞1 − 𝜔2𝑞2

− 𝜔3𝑞3) 

 
The system of equations (1), (7) and (11) are 

known as the governing equations for the 

description of the simple coupling of the orbit-state 

of the satellite in the problem of three bounded 

bodies in the presence of the disturbances of the 

cooking of both main absorbers. Due to the lack of 
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any loop-closed solution for the extracted 

equations, it is necessary to use numerical solution 

methods. Therefore, solving the problem will have 

a strong dependence on the initial conditions of the 

circuit-state parameters. According to the main 

goal of this article to identify simultaneous circuit-

state alternating responses in the described 

problem and also the limitation in the number of 

these responses, the problem will be the need for 

very precise initial conditions in order to meet the 

alternating responses. For this purpose, an 

algorithm called circuit-state modification 

algorithm will be developed, which will be 

responsible for correcting the initial guesses of the 

circuit-state parameters. 

Orbit-Attitude Correction: 

The main goal of this article is to identify and 

analyze the intermittent responses of the satellite 

orbit-state coupling in the problem of three circular 

bounded bodies in the presence of the 

perturbations of both main planets. In order to 

meet these answers, the number of which is very 

limited, the problem requires accurate and 

appropriate initial conditions of state parameters. 

For this purpose, in this article, an algorithm called 

circuit-state modification algorithm will be 

developed. The main task of this algorithm is to 

modify the initial guesses of the state-orbit state 

parameters to accurate initial conditions, the use of 

which leads to meeting the simultaneous 

alternating responses of the state-orbit state. In this 

article, the modified condition vector and the 

initial guess vector of these condition parameters 

will be shown with the symbols 𝜍0
∗ and 𝜍0, 

respectively. Now it is assumed that the initial 

guess vector of state parameters is as follows: 

(12) 𝝇𝟎 = [𝑥0(𝑡0) , 𝑦0(𝑡0) , … , 𝑣0𝑧
(𝑡0) 

 , 𝑞10
(𝑡0) , … , 𝑞40

(𝑡0) , 𝜔10
(𝑡0) , … , 𝜔30

(𝑡0), ] 

This vector consists of two sections of orbital and 

position parameters, where t_f is the suggested 

time of the periodic period. In this case, the 

meeting of the circuit-state alternating responses 

will be required to establish the constraint vector 

τ: 

𝝉 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑥(𝑡0) − 𝑥(𝑡𝑓)

𝑦(𝑡0) − 𝑦(𝑡𝑓)

𝑧(𝑡0) − 𝑧(𝑡𝑓)

𝑣𝑥(𝑡0) − 𝑣𝑥(𝑡𝑓)

𝑣𝑦(𝑡0) − 𝑣𝑦(𝑡𝑓)

𝑣𝑧(𝑡0) − 𝑣𝑧(𝑡𝑓)

𝜔1(𝑡0) − 𝜔1(𝑡𝑓)

𝜔2(𝑡0) − 𝜔2(𝑡𝑓)

𝜔3(𝑡0) − 𝜔3(𝑡𝑓)

𝑞1(𝑡0) − 𝑞1(𝑡𝑓)

𝑞2(𝑡0) − 𝑞2(𝑡𝑓)

𝑞3(𝑡0) − 𝑞3(𝑡𝑓)

𝑞4(𝑡0) − 𝑞4(𝑡𝑓) ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

= 0    

 

 

 

 

 

(13) 

 

where 𝑡0  is equal to the initial time and 𝑡𝑓 is equal 

to the periodic time, which is equivalent to the 

periodic time of Lyapanofi's alternating orbits of 

the problem of three bounded bodies in the 

presence of the aforementioned disturbances. The 

information of the mentioned circuits is available 

in the article of Abbasali et al. [20-21]. In the 

following, the multivariate Newton-Raphson 

method is used in the following form in order to 

identify the appropriate initial conditions that 

apply to clause (13): 

(14) 𝜍𝑖+1

= 𝜍𝑖 − [𝐽13×13(𝜍)
𝑖]−1[𝐹13×1(𝜍)

𝑖] 
 

Initial guess of the orbital states 

In this article, it is suggested to choose suitable 

initial guesses of orbital parameters near the initial 

conditions of Lyapanov orbits of the mentioned 

problem [20]. The idea of this proposal originates 

from the fact that the knowledge of the periodic 

circuit in which the state behavior is supposed to 

be periodic is useful in speeding up the 

convergence process of the circuit-state 

modification algorithm. In other words, in the 

process of solving the problem, the alternating 

circuit in which the behavior of the situation is 

supposed to be alternating should be identified 

first. In this way, in the first step, the said circuit is 

identified through a circuit differential correction 

algorithm [20], [26]. Considering that the circuit-

state modification algorithm simultaneously 

corrects the initial conditions of the circuit and 

state parameters, therefore it is not possible to keep 

the initial conditions of the periodic circuit 



146 / 
 

 

 

A.R. Kosar, E. Abbasali, M. Bakhtiyari, H. Golpour Journal of  Aerospace Science and Technology 
Vol.15/ No. 1/ Winter- Spring 2022 

identified in this algorithm constant. But it is 

possible to guide the algorithm in the simultaneous 

convergence to the selected circuit and the 

alternating behavior of the state in this circuit by 

choosing the initial circuit guesses, close to the 

initial conditions of the identified circuit. It should 

also be noted that the implementation of the 

Poincaré mapping in order to identify the initial 

guesses of the state parameters in Section 5-1 

requires that the alternating circuit in which the 

state response is supposed to be alternating is also 

identified. Therefore, according to the knowledge 

of the mentioned circuit, choosing the initial 

guesses of the circuit state parameters close to the 

initial conditions of the identified alternating 

circuit will be useful in the accuracy and 

convergence speed of the circuit-state 

modification algorithm. Lyapanov orbits are two-

dimensional and alternating orbits that lie in the 

plane of motion of the main planets. So far, many 

researches have been done on identifying these 

circuits. Abbasali et al. [20, 21], in their research, 

developed an algorithm called the orbital 

correction algorithm in order to identify the initial 

conditions of Lyapanovi alternating orbits in the 

three-body problem without perturbations and also 

in the three-body problem in the presence of 

perturbations. The initial conditions of Lyapanov 

circuits are given in the mentioned studies. 

Appropriate initial guesses of circuit-state 

modification algorithm are suggested by assuming 

a small error on these initial conditions. 

Initial guess of the attitude parameters: 

In this article, it is suggested to use Poincaré 

mapping in order to extract initial guesses of state 

parameters. Poincaré mapping is a suitable tool to 

record the dynamic structures of an n-dimensional 

system, such as periodic or quasi-periodic 

structures, in the form  �̇� = 𝑓(𝑥), whose main 

basis is the use of the dynamic flow of the desired 

system. To implement this method, we first define 

an n-1 dimensional cross section perpendicular to 

the dynamic flow and spread our initial guesses on 

it. Then, using the governing equations in each 

stage, we will release the initial guesses and record 

and display the dynamic flow encounter with the 

defined cross-sectional area (Figure 2). 

 

Figure 2. Schematic representation of the Poincaré 

map [27] 

Note that the defined cross section can be any 

combination of system state parameters. 

Specifically, periodic and quasi-periodic structure 

intervals of a two-dimensional structure appear 

along a closed curve on the map created on the 

cross section. These closed curves do not have a 

separate structure from each other but meet in 

islands and the centers of the formed islands will 

be considered as periodic responses. In order to 

better understand the implementation of this 

method, it will be given in the form of an example. 

Consider a symmetric disk-shaped satellite with 

the following moment of inertia characteristics: 

(15) 
𝐾1 =

𝐼3 − 𝐼2
𝐼1

        𝐾2 =
𝐼1 − 𝐼3

𝐼2

= −𝐾1     𝐾3 =
𝐼2 − 𝐼1

𝐼3

= 0   (𝐼2 = 𝐼1) 

where 𝐾1, 𝐾2, 𝐾3  are the ratios of the main 

moments of inertia corresponding to the directions 

of the body frame b ̂. Since the condition 𝐾2 =
−𝐾1 is established in a symmetric disk-shaped 

satellite, the moment of inertia ratio parameter is 

defined as 𝐾 = 𝐾2 = −𝐾1 in this article. In the 

following, an alternating orbit obtained in past 

researches will be selected as the reference path of 

the satellite movement. Now, we consider an 

interval like [4, 4] for initial guesses of satellite 

angular velocities. Now, in order to start the 

process, we choose a number from the mentioned 

interval and change it in each step with a desired 

step. The updating of other state parameters will be 



  

 

 /147 

 

Natural Periodic Orbit Attitude Behavior Of Satellites In Three-Body 

Problem In The Presence Of The Oblate Primaries 

 
 

Journal of  Aerospace Science and Technology 

Vol.15/ No. 1Winter- Spring 2022 

done in each step using dynamic diffusion 

equations. In each step, the desired parameters of 

the dynamic flow will be recorded and displayed 

on the selected cross section. For example, in 

Figure 3, the quaternion mode parameters 𝑞2  and 

angular velocity 𝜔2 can represent a type of 

satellite's rotational motion. 

 
Figure 3. An example of using Poincaré mapping to identify initial guesses of quaternion state parameters 𝑞2 and 

angular velocity 𝜔2  for a disk-shaped satellite with inertia ratio K=0.4 in the Earth-Moon system. 

Results: 

In this article, the planets Earth and Moon are used 

as the main planets of the problem of three limited 

bodies, whose constants are given in Table 1: 

Table 1. Constants of the mature Earth-Moon system 

𝝁𝑬𝒂𝒓𝒕𝒉−𝑴𝒐𝒐𝒏 𝟎. 𝟎𝟏𝟐 

𝑱𝟐
(𝒆𝒂𝒓𝒕𝒉)

  1.0826 × 10−3 

𝑱𝟐
(𝒎𝒐𝒐𝒏)

 2.0323 × 10−4 

𝑫𝑬𝒂𝒓𝒕𝒉−𝑴𝒐𝒐𝒏 (𝒌𝒎) 384400 

𝑹𝒆𝑬𝒂𝒓𝒕𝒉
 (𝒌𝒎) 6378.1 

𝑹𝒆𝑴𝒐𝒐𝒏
 (𝒌𝒎) 1738.1 

𝑹𝒑𝑬𝒂𝒓𝒕𝒉
 (𝒌𝒎) 6356.8 

𝑹𝒑𝑴𝒐𝒐𝒏
 (𝒌𝒎) 1736.1 

As mentioned, the circuit-state modification 

algorithm requires accurate and appropriate initial 

guesses to converge to the desired initial 

conditions. The use of these initial conditions will 

lead to the meeting of simultaneous circuit-state 

alternating responses in the mentioned problem. In 

part 1-5, it was suggested that the appropriate 

initial guesses of orbital parameters should be 

chosen near the initial conditions of the Lyapanov 

orbits of the mentioned problem. The initial 

conditions of the Lyapanov orbits of the baked 

Earth-Moon problem are available in past 

researches [20, 21]. Therefore, the appropriate 

initial guesses of the orbital state parameters are 

selected with a small error of 0.3 (dimensionless) 

compared to these initial conditions. Next, among 

the existing circuits, some of which are drawn in 

Figure 4, one circuit is selected as the reference 

path. The initial guesses of the circuit parameters 

are selected by taking into account the mentioned 

error on the initial conditions of this circuit. 

Island 
Island 

Island 
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Figure 4. An example of the Lyapanov orbits of the Earth-Moon system around the equilibrium points 𝐿1  and 𝐿2 

In the following, in order to identify the initial 

conditions of the state dynamic state parameters, 

the Poincaré mapping approach is used. The initial 

condition vector of the parameters of the satellite's 

mode dynamic state includes 7 elements in the 

form [𝑞10
𝑞20

𝑞30
𝑞40

𝜔10
𝜔20

𝜔30
]. These 7 

elements should be selected by Poincaré mapping. 

The results obtained in this research showed that 

in order to find the appropriate initial conditions 

for the state dynamics parameters in the alternating 

Lyapanov orbits to meet the periodic responses of 

the satellite state in the form [1 0 0 0 0 0 ω_(2_0 ) 

0] It will be that the value of 𝜔02
  should be 

identified from the Poincaré map. For this reason, 

in this section, only Poincaré maps are used to 

identify 𝜔02
. Finally, the initial guesses of the 

circuit-state parameters are entered into the circuit-

state modification algorithm as input. In the 

following, as an example, the first orbit of the 

Lyapanov family around the equilibrium point 𝐿1 

is chosen as the reference path. The Poincaré map 

for a disk-shaped satellite with an inertia ratio of 

K=0.05 with the assumption of a selected orbit is 

drawn in Figure 5: 

 
Figure 5. Poincaré mapping in order to identify initial guesses of the mode parameters for a disk-shaped satellite 

with inertia ratio K=0.05 in the Earth-Moon system. 

In the following, Table 2 contains examples of 

selected initial guesses according to the Poincaré 

map drawn in Figure 5, and the initial conditions 

modified by the circuit-state modification 

algorithm. In this table, the 𝑎 − 𝑡ℎ orbit from the 

family of Lyapanov orbits around the equilibrium 

point b is displayed with the symbol L(b:a) 
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Table 2. Examples of selecting the initial guesses of the state-orbit parameters according to the Poincaré map drawn 

in Figure 2 for a disc-shaped satellite with inertia ratio K=0.05 in the first orbit of the Lyapanov family around the 

equilibrium point 𝐿1 in the Earth-Moon system. 

In order to show the effect of Earth-Moon 

planetary curvature perturbations in the problem of 

three bounded bodies, the Poincaré map assuming 

the same assumptions of the state-orbit state 

parameters (as the inputs of the Poincaré map) for 

a disk-shaped satellite with inertia ratio K = 0.04 

once considering disturbances (Perturbed) and 

another time without considering disturbances 

(Unperturbed) is drawn in Figure 6. 

 

 
Figure 6. The effect of disturbances on finding initial guesses using Poincaré mapping according to the initial 

guesses of the parameters of the dynamic flow state by considering a disk-shaped satellite with inertia ratio K=0.04 

in the first orbit of the Lyapanov family around the equilibrium point 𝐿1 

The change in the pattern of the islands formed in 

the Poincaré maps drawn in Figure 6, with regard 

to the same inputs for drawing the map, is a good 

example of the role and impact of disturbances in 

the studied problem. As it is clear from this figure, 

in both models, islands are formed in almost 

common points, but their shape and pattern are 
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different. In the following, it will be shown that the 

selection of the same initial guesses in both 

disturbance and non-disturbance models will lead 

to different initial conditions in order to match the 

circuit-state alternating responses in the two 

mentioned models. In Table 3, some of the same 

initial guesses extracted from the Poincaré maps 

drawn in Figure 6 along with the initial conditions 

modified by the orbit-state modification algorithm 

are given in two states without disturbance and 

with disturbance of the Earth-Moon planets. This 

table also includes the initial guesses and initial 

conditions of two disturbance and non-disturbance 

models for other equilibrium points. The symbol P 

in this table corresponds to the disturbed model 

and the symbol U corresponds to the unperturbed 

model. 

Table 3. The modified initial conditions of the state-orbit parameters according to the same initial guesses of these 

parameters for the simple Earth-Moon problem and disturbance by considering a disk-shaped satellite with an inertia 

ratio of K=0.04 around the linear equilibrium points. 

 

As it is clear from the data in Table 3, taking into 

account the cooking disturbances, in addition to 

the effect on the pattern of the islands formed in 

the Poincaré maps (assuming the same inputs of 

the two models), causes a change in the modified 

initial conditions of the circuit-state (according to 

The same initial guesses of the state parameters of 

the circuit-state) are made in two perturbation and 

non-perturbation models in order to meet the 

simultaneous alternating responses of the circuit-

state. One of the influential parameters in the 

convergence of the algorithm to the desired 

response is the inertia ratio parameter K. The 

research carried out in this article showed that it is 

possible that a vector of initial guesses of circuit-

state parameters with different values of inertia 

coefficient leads to the identification of different 

initial condition vectors of circuit-state parameters 

in order to meet simultaneous alternating 

responses of circuit-state or that the problem does 

not have any alternate solution for certain values 

of the inertia coefficient. In order to identify the 

inertia ratios in this article, Poincaré maps were 

drawn for the Lyapanov circuit family around the 

equilibrium point of point 𝐿2 for the inertia 

moment ratios K, from there the results are similar 

between the circuits in each family. Figure 7 is an 

example. These maps are given for a Lyapanov 

orbit 𝐿2 . The left column is drawn for an orbit with 

a period of 3.7 (dimensionless) and the right 

column is drawn for an orbit with a period of 4 

(dimensionless). 
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Figure 7. Poincaré mapping for different inertia ratios K for the first two orbits of the Lyapanov family 𝐿2 

Conclusion: 

In this article, the alternating responses of the 

orbit-state coupling problem of three circular 

bounded bodies were studied in the presence of 

perturbations of both main attractors. For this 

purpose, in the first step, the equations of orbital 

motion in the turbulent environment were derived 

using Lagrangian mechanics. Since the circuit-

state coupling equation device does not have an 

analytical solution, numerical methods were 

employed to solve it. Considering that these 

methods can lead to the convergence of the 

problem to alternating or non-alternating 

responses according to the initial conditions of the 

state parameters, and considering the limitation in 

the number of desired responses, it is necessary to 

Appropriate initial conditions are used. In order to 

obtain the initial conditions that lead to circuit-

state alternating responses, an algorithm called the 

circuit-state modification algorithm was 

developed. The proposed algorithm used the 

Newton-Raphson multivariate gain approach in 

order to meet periodic responses. The non-

convergence of the proposed algorithm for each 

desired input indicated the algorithm's need for 

accurate and appropriate initial guesses. For this 

purpose, the selection of suitable guesses of orbital 

state parameters close to the initial conditions of 

alternating circuits in the mentioned problem was 

proposed. In the continuation of determining the 

identification of suitable initial guesses of 

situational parameters, it was proposed to use 

Poincaré mapping. Poincaré mapping is effective 

in finding suitable initial guesses for alternating 

solutions by considering the desired dynamic flow 

and its successive passage every time the initial 

conditions of the flow change from the cross-

sectional surface perpendicular to it. The islands 

obtained in this mapping mean the repetition of 

similar solutions in the target area, so the guesses 

that lead to the formation of these islands can be 

considered as suitable guesses for the solutions. be 

considered intermittent. The centers of the 

mentioned islands were considered as initial 

guesses of the situation parameters. Examining the 

alternating responses of circuit-state coupling in 

the mentioned problem revealed that the 
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mentioned responses depend on three basic 

factors: 

The first factor was the reference paths of periodic 

solutions. The mentioned disturbances with direct 

effect on these paths will lead to indirect effects on 

the state parameters. In other words, in the 

coupling model, considering the environmental 

disturbances will lead to changes in the reference 

paths that have visible effects on the state 

parameters. 

The second factor is the identification and 

selection of the initial guess of the angular velocity 

𝜔02
, which was done using Poincaré mapping. It 

has also been stated that the use of the angular 

velocity vector in the form [0, 𝜔02
, 0]  is very 

effective in the convergence process of the circuit-

state modification algorithm to the desired 

answers. 

The third factor is the selection of appropriate 

values of the inertia ratio K, which as mentioned, 

for different values, the problem can have several 

periodic responses or no periodic response. 

Identifying the appropriate values of the inertia 

ratio in this article was done by analyzing the 

sensitivity of this value on the islands created in 

the Poincaré map. 

One of the most important results of this study was 

to show the influence of the satellite inertia ratio 

and the periodicity time of Lyapanovy alternating 

orbits as a reference path. The results showed that 

with the increase of the inertia ratio and the 

alternating time of the reference paths, the number 

of islands formed in the map formed by the 

Poincaré map will decrease and the chance of 

finding alternating state responses will decrease. 

Comparing the responses obtained in an 

environment considering the disturbances of both 

main absorbers with the environment without 

disturbances led to a proper understanding of the 

effect of the mentioned disturbances on the 

problem of periodic responses of circuit-state 

coupling. Adding these disturbances by bringing 

the studied environment closer to the real 

environment leads to obtaining more accurate 

answers and a better understanding of the natural 

motion of the orbit-state of the satellite in the 

problem of three bounded bodies. It can be a 

stepping stone in such problems. Be considered. 

References:  

[1] J. P. Gardner et al., “The james webb space 

telescope,” Space Sci. Rev., vol. 123, no. 4, pp. 485–606, 

2006. 

[2] J. Krist, P. Kalas “In the Spirit of Bernard Lyot: The 

Direct Detection of Planets and Circumstellar Disks in the 

21st Century, ed,” (Berkeley, CA Univ. California), vol. 32, 

2007. 

[3] M. Hechler and J. Cobos, “Herschel, Planck and 

Gaia orbit design,” in Libration Point Orbits and 

Applications, World Scientific, 2003, pp. 115–135. 

[4] M. Machula and G. Sandhoo, “Rendezvous and 

docking for space exploration,” in 1st Space exploration 

conference: continuing the voyage of discovery, 2005, p. 

2716. 

[5] T. R. Kane and D. J. Shippy, “Attitude stability of a 

spinning unsymmetrical satellite in a circular orbit(Attitude 

stability of a spinning unsymmetrical satellite, with unequal 

moments of inertia, in a circular orbit),” J. Astronaut. Sci., 

vol. 10, pp. 114–119, 1963. 

[6] T. R. Kane and E. L. Marsh, “Attitude stability of a 

symmetric satellite at the equilibrium points in the restricted 

three-body problem,” Celest. Mech., vol. 4, no. 1, pp. 78–

90, 1971. 

[7] W. J. Robinson, “Attitude stability of a rigid body 

placed at an equilibrium point in the restricted problem of 

three bodies,” Celest. Mech., vol. 10, pp. 17–33, 1974. 

[8] B. Wong, R. Patil, and A. Misra, “Attitude 

dynamics of rigid bodies in the vicinity of the Lagrangian 

points,” J. Guid. Control. Dyn., vol. 31, no. 1, pp. 252–256, 

2008. 

[9] M. Sanjurjo-Rivo et al., “On the dynamics of a 

tethered system near the collinear libration points,” in 

AIAA/AAS Astrodynamics Specialist Conference, 2008, pp. 

3218–3242. 

[10] D. Guzetti, R. Armellin, and M. Lavagna, 

“Coupling attitude and orbital motion of extended bodies in 

the restricted circular 3-body problem: A novel study on 

effects and possible exploitations,” in Proceedings of the 

63rd International Astronautical Congress, Naples, Italy, 

2012, pp. 5715–5728. 

[11] D. Guzzetti and K. C. Howell, “Coupled orbit-

attitude dynamics in the three-body problem: A family of 

orbit-attitude periodic solutions,” in AIAA/AAS 

Astrodynamics Specialist Conference, 2014, p. 4100. 

[12] E. Canalias and J. J. Masdemont, “Homoclinic and 

heteroclinic transfer trajectories between Lyapunov orbits 

in the Sun-Earth and Earth-Moon systems,” Discret. Contin. 

Dyn. Syst, vol. 14, pp. 261–279, 2006. 

[13] J. Singh, A. E. Perdiou, J. M. Gyegwe, and E. A. 

Perdios, “Periodic solutions around the collinear 

equilibrium points in the perturbed restricted three-body 

problem with triaxial and radiating primaries for binary HD 

191408, Kruger 60 and HD 155876 systems,” Appl. Math. 

Comput., vol. 325, pp. 358–374, 2018. 

[14] V. K. Srivastava, J. Kumar, P. Mishra, and B. S. 

Kushvah, “Halo orbit of regularized circular restricted 

three-body problem with radiation pressure and oblateness,” 

J. Astrophys. Astron., vol. 39, no. 5, p. 63, 2018, doi: 

10.1007/s12036-018-9551-4. 

[15] V. V Markellos, K. E. Papadakis, and E. A. Perdios, 

“Non-linear stability zones around triangular equilibria in 

the plane circular restricted three-body problem with 

oblateness,” Astrophys. Space Sci., vol. 245, no. 1, pp. 157–

164, 1996. 

[16] J. Singh and V. U. Cyril-Okeme, “Perturbed Robe’s 

circular restricted three-body problem under an oblate 



154 / 
 

 

 

A.R. Kosar, E. Abbasali, M. Bakhtiyari, H. Golpour Journal of  Aerospace Science and Technology 
Vol.15/ No. 1/ Winter- Spring 2022 

primary,” New Astron., vol. 34, pp. 114–119, 2015. 

 

 

 

[17] A. E. Perdiou, V. V Markellos, and C. N. Douskos, 

“THE HILL PROBLEM WITH OBLATE SECONDARY: 

NUMERICAL EXPLORATION,” Earth. Moon. Planets, 

vol. 97, no. 1, pp. 127–145, 2005, doi: 10.1007/s11038-006-

9065-y. 

[18] A. Colagrossi and M. Lavagna, “Preliminary results 

on the dynamics of large and flexible space structures in 

Halo orbits,” Acta Astronaut., vol. 134, pp. 355–367, 2017, 

doi: https://doi.org/10.1016/j.actaastro.2017.02.020. 

[19] R. Schwarz, Á. Bazsó, B. Érdi, and B. Funk, 

“Stability of the Lagrangian point L 4 in the spatial 

restricted three-body problem–application to exoplanetary 

systems,” Mon. Not. R. Astron. Soc., vol. 427, no. 1, pp. 

397–402, 2012. 

[20] E. Abbasali, A. Kosari, and M. Bakhtiari, “Effects 

of oblateness of the primaries on natural periodic orbit-

attitude behaviour of satellites in three body problem,” Adv. 

Sp. Res., 2021. 

[21] E. Abbasali and M. Bakhteiari, “Restricted three 

body problem considering the perturbations of both oblate 

massive primaries,” J. Aerosp. Sci. Technol., vol. 13, no. 2. 

[22] V. K. Srivastava, J. Kumar, and B. S. Kushvah, 

“Regularization of circular restricted three-body problem 

accounting radiation pressure and oblateness,” Astrophys. 

Space Sci., vol. 362, no. 3, p. 49, 2017. 

[23] A. E. Ibrahim and A. K. Misra, “Attitude dynamics 

of a satellite during deployment of large plate-type 

structures,” J. Guid. Control. Dyn., vol. 5, no. 5, pp. 442–

447, 1982. 

[24] P. HUGHES, “Attitude dynamics of a three-axis 

stabilized satellite with a large flexible solar array,” in 

Guidance and Control Conference, 1972, p. 857. 

[25] A. J. Knutson and K. Howell, Coupled orbit and 

attitude dynamics for spacecraft composed of multiple 

bodies in earth-moon halo orbits, vol. 8. 2012. 

[26] K. C. Howell, “Three-dimensional, 

periodic,‘halo’orbits,” Celest. Mech., vol. 32, no. 1, pp. 53–

71, 1984. 

[27] D. Guzzetti and K. C. Howell, “Natural periodic 

orbit-attitude behaviors for rigid bodies in three-body 

periodic orbits,” Acta Astronaut., vol. 130, pp. 97–113, 

2017. 

 

 
 

 

 

 
 

COPYRIGHTS 
©2022 by the authors. Published by Iranian Aerospace Society This article is an open access article distributed under the terms and 

conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0)  

(https://creativecommons.org/licenses/by/4.0/). 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

HOW TO CITE THIS ARTICLE: 

Amirreza Kosari, Ehsan Abbasali, Majid Bakhtiyari, Hameh Golpour, “Natural Periodic Orbit Attitude Behavior Of 

Satellites In Three-Body Problem In The Presence Of The Oblate Primaries’, Journal of Aerospace Sciece and Technology,  

Vol 15, No1, 2022, pp, 140-154   

DOI: doi.org/10.22034/jast.2022.311711.1104 
URL: https://jast.ias.ir/article_144301.html 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.22034/jast.2022.311711.1104
https://jast.ias.ir/article_144301.html

