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In this paper, the effect of perturbations of oblate primaries in the Circular Restricted
Three-Body Problem is studied, and the equations of satellite orbital motion in the Circular
Restricted Three-Body Problem are developed by employing Lagrangian mechanics. Since the
equations have no closed-form solution and numerical methods must be applied, the problem
can have different periodic or quasi-periodic solutions depending on the equation's initial
conditions of orbital state parameters. For this purpose, an algorithm named “orbital
correction algorithm” is proposed to correct the initial conditions of orbital state parameters.
The limited number of periodic orbits in the study environment indicates the algorithm’s need
for suitable initial guesses as input. In the present paper, suitable initial guesses for orbital
state parameters are selected from the third-order approximation of the Unperturbed Circular
Restricted Three-Body Problem’s periodic solutions, increasing the chance of obtaining
desired periodic solutions. The obtained perturbed and unperturbed periodic orbits are
compared in order to understand the effect of perturbations. Adding the perturbations brings
the study environment closer to the real environment and helps understand satellites' natural
motion.
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the mentioned multi-body structures in which a

Introduction

Today, space agencies are increasingly using
multi-body dynamical structures in their missions.
These missions are performed with aims such as
astronomical observations (J.P. Gardner et al.,
2006; J. Krist, 2007; M. Hechler and J. Cobos,
2003), building space habitats, improving the
pointing accuracy of space telescopes, and docking
with space stations (M. Machula and G. Sandhoo,
2005). The Circular Restricted Three-Body
Problem can be an appropriate approximation of

spacecraft is afloat in the gravitational field of two
primary planets, and its presence does not affect
their motion (H.D. Curtis, 2013). The reason why
the primaries’ motions are not affected by the
spacecraft is that the spacecraft's mass is
considered infinitesimal compared to that of the
primaries.

Valuable research has been done on the Circular
Restricted Three-Body Problem. Kunistyn studied
the stability of satellites in the vicinity of the
Libration points (A.L. Kunitsyn, 2013). Kikuchi
and Tsuda performed the three-axis stabilization of
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satellites in the Circular Restricted Three-Body
Problem (S. Kikuchi et al., 2019). Lega and Guzzo
studied the energy manifolds in the Circular
Restricted Three-Body Problem (E. Lega and M.
Guzzo, 2016). Bakhtiari and Abbas Ali studied
satellite flight formation in the Elliptical
Restricted Three-Body Problem (M. Bakhtiari et
al., 2017).

The satellite equations of motion in the Circular
Restricted Three-Body Problem have no closed-
form solutions (H.D. Curtis, 2013;) and therefore
require numerical solving methods. In numerical
methods, depending on the initial conditions of the
state parameters, the problem can have countless
solutions. Therefore, a numerous number of orbits
can be found in this problem. Orbits with periodic
and quasi-periodic  structures have many
applications, including keeping satellites in
trajectory and data transmission continuity.

Halo and Lyapunov orbits are two well-known
types of periodic orbits in the Circular Restricted
Three-Body Problem (X. Hou et al., 2018; B.
Wong et al., 2008). Robert Farquhar first used the
term ‘Halo orbits’ in his doctoral dissertation
(R.W. Farquhar, 1968). Farquhar and Kamel then
produced analytical solutions to find quasi-
periodic orbits in the vicinity of the L, point in the
Earth-Moon system (R.W. Farquhar and A.A.
Kamel, 1973) using the method of Lindstedt-
Poincaré (A. Casal and M. Freedman, 1980).
Following these studies, Breakwell and Brown
developed a numerical method for finding stable
periodic orbits in the vicinity of the L, point of the
Earth-Moon system (J. V Breakwell and J. V
Brown, 1979). Using these studies, Howell
developed a comprehensive numerical method for
finding Halo orbits in the Lagrangian points of the
Circular Restricted Three-Body Problem in his
doctoral dissertation (K.C. Howell, 1984).
Bringing the study environment closer to the real
environment will lead to a more accurate
simulation of the above orbits. Adding the spatial
perturbations to the study environment helps
achieve this goal (Y.-J. Qian et al., 2019). Singh
calculated the orbital analysis of the Circular
Restricted  Three-Body  Problem  regime
considering the oblate Earth in the Earth-Moon
system (J. Singh, 2015). Srivastava and Kumar
regularized the orbits of the Circular Restricted
Three-Body Problem system with radiation
pressure and the oblate Earth in the Earth-Sun
system (V.K. Srivastava et al., 2017), using
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Lagrangian mechanics in order to solve the
equations of orbital motion. Markellos and
Papadakis studied the nonlinear stability of
satellites in the vicinity of the Lagrangian points of
the Earth-Moon system considering the
perturbations of oblate Earth (V. V Markellos et
al., 1996). Singh completed the research by
accounting for a spacecraft with variable masses
(J. Singh, 2015). Zhang et al. studied the effect of
oblateness perturbations on spacecraft hovering in
low Earth orbit (L. Zhang and P. Ge, 2021).

This paper aims to investigate the effect of
perturbations of both oblate primaries on the
periodic satellite orbits in the Circular Restricted
Three-Body Problem for the Earth-Moon system.
Accounting for the perturbations of oblate Earth
and oblate Moon will bring the study environment
closer to the real environment and lead to a better
simulation and understanding of these orbits. This
paper will refer to the Perturbed Circular
Restricted Three-Body Problem and the
Unperturbed Circular Restricted Three-Body
Problem as P-CRTBP and U-CRTBP,
respectively. Comparing the periodic orbits of
these two environments will better understand the
effect of primaries’ oblateness perturbations.

The geometry of the Perturbed Circular
Restricted Three-Body Problem

Assume two oblate primaries with masses m; and
my (m1 > m2), which only move under the influence
of each other's mutual gravitation. We add a
spacecraft with the mass of m to this system and
want to express its equations of motion in the
system. The mass of the spacecraft is negligible
compared to that of the primaries. In celestial
mechanics, this problem is referred to as the
Perturbed Circular Three-Body Problem because
the spacecraft's motion does not affect the motion
of the primaries (point in case, the mass of
spacecraft versus the mass of the planets of the
solar system). The motion of the small spacecraft
m in this system is the most important part of the
Circular Restricted Three-Body Problem. When
two primaries move in a particular circular orbit,
the coordinates constant to their motions can be
defined. The center of these coordinates is located
on the barycenter of primaries. The coordinates
rotate at constant angular velocity Q equal to the
mean motion of the primaries. These coordinates,
known as a rotating frame, are expressed by unit
vectors r(X, ¥, Z) in such a way that Zis
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perpendicular to the primaries' planes of motion
and the primaries always remain on the X-axis. The
inertial frame I(X, ¥,Z) is defined so that at the ¢
= 0 initial time, it is aligned to the rotating frame
and Z is always aligned with the direction of
rotating frame Z unit vector and is perpendicular to
the primaries' plane of motion. Now, for
simplification of equations, it is better to use a non-
dimensional form so that the universal gravitation
constant G, angular velocity Q and the distance
between the two primaries are unity. We'll also
assume the orbital period of the primaries as 2n
and the mass parameter u as the ratio between m,

and the total mass of the system u = mrzzm .
1 2

Mass parameter y also defines the location of the
primaries in a way that primary m; is located at
(— 1,0,0) and primary ms is located at (1 — p1,0,0).
The assumed data used in non-dimensionalizing
the equations can be summarized in the following
relations:

' =Ll
v’=§v )
t' = Tt

T 2

Where the primed parameters are dimensional, the
unprimed parameters are non-dimensional, and the
distance between the primaries and their orbital
period of motion are L and 7, respectively.

Y

my

Figure 1. The geometry of the P-CRTBP. The inertial
frame and rotating frame are represented by red and
blue, respectively.

Equations of spacecraft orbital motion in
the P-CRTBP with perturbations of both
oblate primaries

In this paper, Lagrangian mechanics is the main
method used for obtaining the equations of orbital
motion in the P-CRTBP. In this mechanics, a
body's equations of motion are extractable by
obtaining kinetic energy and potential field
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affecting the object. The Lagrangian function L is
commonly written as:

L=V-K )

Where K and V are kinetic energy and potential
field of the system, then the following equations

are used to obtain the equations of motion:
oL d oL .
3)

Fown @ Gowd)

The potential field at P-CRTBP considering the
perturbations of both oblate primaries

The potential gravitational field per unit mass of a
body at the distance p from the center of the oblate
body with the mean radius of R,, can be written
as (V.K. Srivastava, J. Kumar, B.S. Kushvah,
2017):

V= =2 (1= 32,0 PalcosO)]  (4)
Where J,; is the second zonal harmonics, 8 is the
angle from the satellite to the center of the oblate
primary, and P,; is the Legendre polynomials.
According to research, since the second zonal
harmonic J, is much larger than other zonal
harmonics, the present paper only consider this
harmonic and ignores the effect of other
harmonics.
Accounting for the second zonal harmonic /,, the
potential field of the spacecraft located at distance
r from the oblate primary is obtained by placing k&
= 2 in Equation (4) and, after simplification, is
rewritten as follows:

1, A
V=—Gm(+%) ()
Where A, is the primary's oblateness coefficient
and is equal to J,R,%, and R, is the primary's
equatorial radius (V.K. Srivastava, J. Kumar, B.S.
Kushvah, 2017).
Considering both primaries as oblate bodies, the
potential field of the P-CRTBP is obtained by non-
dimensionalizing Equation (5), which is the sum of
potential fields of both oblate primaries:

V= () ¢ (a-n e ) ©

Where d and r are the non-dimensional distance of
the spacecraft from m and m., respectively:

d=Jx+W2+y?+z2
r=\/(x—1+u)2+y2+z2 7
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The Kkinetic energy in P-CRTBP considering the
perturbations of both oblate primaries

The kinetic energy of a spacecraft in a rotating
frame which rotates about z-axis with uniform

angular velocity n, is expressed as (V.K.
Srivastava, J. Kumar, B.S. Kushvah, 2017):

1 o 1
K=2(vi+vj+vZ)+nxy—xy) +5n°(x* +
y?) (8)

Where v, vy, and v. are velocity components of the
spacecraft in rotating frame. Mean motion » is
obtained from (J.A. Arredondo, J. Guo, C. Stoica,

C. Tamayo, 2012):

n=\[1+3(§”+]§2)) (10)

Where ]él) and ]éz) are zonal harmonics of
m1 and mo, respectively.

Formulating the equations of spacecraft orbital
motion in the P-CRTBP with perturbations of
oblate primaries

As mentioned in section 4, the method used in this
paper to obtain the equations of spacecraft orbital
motion f, (X,p) is Lagrangian mechanics. The
orbital state vector Xorp =
[X, Y, 2, Ux, Uy, ;] includes the spacecraft's center
of mass position and velocity components
expressed in the rotating frame. The equations of
spacecraft orbital motion in the P-CRTBP are
obtained by placing relations (6) and (8) in
function (2) and using Equation (3):
(10)

) X(Xorp) =
. P + 1) x+ —1+ 2) x—1+
x=n2x+2nvy+(u—1)[xd—;l+3A(2)xd—5“]—u[%+3A(2)xr—5“]

¥ =n?y —2nv, + (n—1) [dy—j+3A(21)% — p[r%+3A(22)r15]
- : 8 2
2= (n— D5+ 345" 5] — ui5 + 340 2]

Note that by setting the oblateness coefficient to
zero in Equation (10), the equations of satellite
orbital motion in the unperturbed case are
obtained. The equation system used in (10) which,
in fact, expresses the spacecraft orbital motion in
the P-CRTBP, has no closed-form solution and
therefore requires numerical solving methods.
Numerical methods require initial conditions to
begin the solution process. The problem can have
different answers based on the initial condition,
including periodic or quasi-periodic. Obtaining
periodic orbits in the P-CRTBP is one of the most
important aims of this research, seeing that it helps
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us to understand the effect of perturbations on the
orbits. Since there is a limited number of periodic
orbits in the U-CRTBP, it is expected that the
number of periodic orbits in the P-CRTBP would
be limited as well. Also, since based on the initial
conditions assumed for the orbital state vector
Xorp» SOlving the equation system does not lead to
periodic answers in many cases, we need to find
suitable initial conditions to reach periodic
answers. Kathleen Howell obtained some of these
periodic orbits, known as Halo orbits, in the U-
CRTBP (K.C. Howell, 1984).

In this paper, the orbital correction algorithm is
proposed in order to achieve the suitable initial
conditions of periodic Halo and Lyapunov orbits
in the P-CRTBP. This algorithm uses State
Transition Matrix (STM) of the equations of
orbital motion to correct the initial guesses
assumed for the initial condition of x,,, orbital
state vector. The mentioned initial guesses, which
are derived from the third-order approximation of
equations of orbital motion in the U-CRTBP, are
available in (K.C. Howell, 1984; D. Guzzetti and
K.C. Howell, 2014)

P-CRTBP orbital correction algorithm

Depending on the initial conditions of the orbital
state vector, several periodic orbits are obtained in
this problem. It is expected that some of the
periodic orbits found in the U-CRTBP would be
found in the P-CRTBP as well. These orbits,
known as Halo and Lyapunov families, have
special characteristics such as being symmetrical
and perpendicular to the orbital plane of the
primaries. In this paper, we will use the above
characteristics to obtain the orbital motion
algorithm of the P-CRTBP in order to achieve the
suitable initial conditions of the Halo and
Lyapunov families.

P-CRTBP Halo orbit family

Assume that the orbit of the oblate primaries is
located on xz plane. In general, the initial vector of
orbital motion state is written as = Xg =
[X0, Y0, Z0» Vxy» Vy,» V2, |- The initial guess vector is
perpendicular to xz plane if it is written as X =
[x0,0, 2, 0,vy,,0]" with an orbital period of 7. If
another crossing from zx plane is defined as
X (%) = [x,0,2,0,vy,0], then the orbit is periodic,
symmetrical, and perpendicular to the plane of
motion of the primaries throughout its trajectory.
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Orbits with these characteristics are known as Halo
orbits.

Considering the initial condition, numerical
integration of equations of motion (10) is used
until y changes its sign. Next, if v, = 0and v, =
0, then periodic Halo orbit is obtained. Otherwise,
if v, #0 and v, # 0, then we assume that the
initial guess correction vector must be written as

[69, 0,620, 0,8vy,,0]. 1f y(3) = 0, then 6v,,, and
6vy, must be modified to correct the initial guess

in order to achieve the desired initial condition.
The State Transition Matrix of the orbital

equations (STM, = ®,) at (g) can represent the

relation between the initial guess vector at the
initial time and at half-period time. This matrix is
generally defined as follows, where J, is the
Jacobian of Equation (10) in the state space, and
I 1s the identity matrix.

D, (t,0) = Jox6Po (11)
®,(0,0) = Iexe

Orbital correction algorithm is calculated from
(K.C. Howell, 1984):

> T S X T
5X = @, (5,0) 6% +5,6(3) (12)
Note that:
T
8y = 0 =Dy, Xg + Pg,, 29 + Py, Vy, + vy (5)

(13)
Now, if xy > 2z, it is better to leave z, fixed and
only change v, and xy:

(5Ux) = Poys (I)O45 —
ovy Do, P

1 /o 065 s
E(ffz‘) (®os, @oss) (5y,) (14)

And if zy > x,, it is better to leave x, fixed and
only change v, and z,:

(SVX) = [ Poyq CDO45 —
vy Do, (0]

O6s

o () @y, @0, (50 (15)

P-CRTBP Lyapunov orbit family

In Lyapunov orbits, which are two-dimensional
trajectories, the initial guess vector is written as
Xo = [%0,0,0,0,v,,0]", which is perpendicular
to xz plane at the initial time, 7 is the orbital period.
If another crossing from zx plane is defined as
X (;) =[x, 0,0,0,v,, 0], then the orbit is periodic,
symmetrical, and perpendicular to the plane of
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motion of the primaries throughout its trajectory.
The process of extracting the orbital correction
algorithm is the same as Halo orbits, but with v, =
6zy = 0, due to their two-dimensionality.

Results

In this paper, the Earth and Moon are considered
as oblate primaries. Table 1 shows the constant
values of this system.

Table 1. Constant values of oblate Earth-Moon system

HEarth—moon 0.0121505856
(earth) 1.0826 x 1073
(moon) 2.0323 x 10~*

Dgarth—moon (kM) 384400

Reggren (kM) 6378.1

Repro0n (kM) 1738.1

As stated before, extracting the periodic orbits in
the P-CRTBP is one of this research aims. The
orbital correction algorithm is used to achieve the
initial conditions of P-CRTBP Halo and Lyapunov
orbits. This algorithm uses the results of the third-
order approximation of equations of motion for the
U-CRTBP available in (K.C. Howell, 1984; D.
Guzzetti and K.C. Howell, 2014) as suitable
inputs. Table 2 shows some of this algorithm's
outputs, including the initial conditions of the Halo
and Lyapunov periodic orbits in the P-CRTBP in
the vicinity of the Libration points.

In this paper, the ath periodic orbits of the Halo
and Lyapunov families in the vicinity of the eth
Lagrangian points are represented by H(e:a) and
L(e:a), respectively, and non-dimensional units are
represented by (ndim).



32 / Joumnal of Aerospace Science and Technology
Vol. 13/ No. 2/ Summer-Fall 2020

Ehsan Abbasali, Amirreza Kosari, Majid Bakhtiari

Table 2. The corrected initial conditions for X (L) and x§(H) periodic orbits with orbital period 7 of the Earth-
Moon system obtained by the proposed orbital correction algorithm with the initial guess vectors of f‘g (L) and
Tg (H) orbit families.

Xo Yo Zp Vo Vyo Vzo T
(ndim) (ndim) | (ndim) (ndim) (ndim) (ndim) | (ndim)

x(L(1:1)) 0.7689 0 0 0 0.423 0 3.95
% (L(1: 1)) 0.7815732 0 0 0 0.4432 0
X9 (L(1:2)) 0.7816 0 0 0 0.47 0 4.4
%5 (L(1:2)) 0.7688476 0 0 0 0.4813 0
xJ(L(2:1)) 1.22 0 0 0 -0.41 0 431
Xo(L(2:1)) 1.2199794 0 0 0 -0.4275 0
x9(L(2:2)) 1.2248 0 0 0 -0.44 0 4.46
%5 (L(2:2)) 1.2248305 0 0 0 -0.4419 0
x(L(3:1)) -1.6068 0 0 0 1.1 0 6.23
x5 (L(3:1)) -1.6068057 0 0 0 1.1159 0
xJ(L(3:2)) -1.6392 0 0 0 1.1669 0 6.25
%5 (L(3:2)) -1.6392143 0 0 0 1.1745 0
XJ(H(1:1)) 0.8234 0 0.0224 0 0.1343 0 3
FS(H(1: 1)) 0.81764301 0 0.02002 0 0.0987 0
X9 (H(1:2)) 0.85 0 0.044 0 0.15 0 3.23
%S (H(1:2)) 0.8432776 0 0.0433 0 0.1589 0
7;‘,’(11(2; 1)) 1.17 0 0.011 0 -0.1432 0 5
¥ (H(2: 1)) 1.1807092 0 0.01389 0 -015696 0
X3 (H(2:2)) 1.01 0 0.17 0 -0.1 0 5.287
%5 (H(2:2)) 1.02748 0 0.18562 0 -0.1148 0
XJ(H(3:1)) -0.71 0 0.5 0 -0.19 0 6.25
*(H(3:1)) -0.7916 0 0.6160 0 -0.2129 0
X9 (H(3:2)) -0.5 0 0.791 0 -0.39 0 6.3
x5(H(3:2)) -0.5798 0 0.8160 0 -0.4241 0




Restricted Three-Body Problem Considering Perturbations of ....

Some periodic orbits are shown in Figures (8) and
(9) based on the conditions obtained in Table 2.
The similarity between these orbits and the Halo
and Lyapunov orbit families in the U-CRTBP
available in literature (A. Celletti, G. Pucacco, D.
Stella, 2015; E. Canalias and J.J. Masdemont,
2006) can be considered as a validation for the
obtained responses.

@ (b)

ey
HilagetiiN
0
22
< "4

2 (ndim)
°

%

yodm T x(ndim) ydim TS adim)

Figure 2. The P-CRTBP L3 (a) Vertical Halo orbit
family (b) Axial Halo orbits family. The first orbit of
each family is represented by red.

06 (b) 15 (c)

04 1 1

0.2 05

S 0

¥ (ndim)
S
¥ (ndim)

0.2 05

08 1 12 14 06 08 1 12 2 4 0 1
X (ndim) x (ndim) x (ndim)

Figure 3. The P-CRTBP Lyapunov orbit family in the
vicinity of (a) Libration Point L/, (b) Libration Point
L2, (¢) Libration Point L3. The first orbit of each
family is represented by red.

this paper, Lyapunov periodic orbits are used to
show the effect of the previously mentioned
perturbations. Table 3 shows the absolute
difference between the initial conditions of orbit
state parameters of the P-CRTBP and the
U_CRTBP for the Lyapunov orbit family to show
the importance of initial conditions in drawing the
periodic tables and demonstrate the effect of

perturbations of both oblate primaries.
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Table 3. The absolute difference A between the initial
conditions of Lyapunov orbits in the U-CRTBP and
the P-CRTBP with perturbations of both oblate
primaries in the vicinity of the collinear Libration

points.
orbit A

(ndim)

L(1:1) Ax§ =3.7603 x 1077
Avy =0

L(1:2) Axy = 3.5774 % 1077
Avy =0

L(1:3) Axy = 3.766 X 1077
Avy =0

L(2:1) Axg = 1.0139 x 107°
Avy =0

L(2:2) Axy = 1.0297 x 107
Avy =0
L(2:3) Axy =0

Avy = 1.4812x107°

L(3:1) Axy = 9.3765 % 1077
Avy =0

L(3:2) Ax$ = 7.3958 x 1077
Avy =0

L(3:3) Axy = 4.5108 x 1077
Avy =0

According to Table 3, the absolute difference A
between the U-CRTBP and the P-CRTBP models
may seem insignificant, but the information
presented in Figure 4 refutes this claim. In Figure
(4), to show the importance of initial conditions
and the effect of perturbations, the initial
conditions for equations of the orbital motion of
the unperturbed model are used as the initial
conditions for the equations of the orbital motion
of the perturbed model. Figure 4 (a and b) show
the perturbed models in the vicinity of the
Libration point L; and L, with the conditions
previously mentioned diverging after the second
orbital period. Figure 4 (c) shows that moving
away from the primaries delays divergence to
sixteen periods. This is evident in Lyapunov orbits
in the vicinity of the Libration point L; which is
more distant from the primaries than other
Libration points. Based on Table 3 and Figure 4, it
is noteworthy that the accuracy for drawing
periodic orbits according to the initial conditions
of the orbital state is up to seven digits in the non-
dimensional form.
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y (ndim)
o

-0.5

X (ndim) X (ndim) x (ndim)

Figure 4. Initial conditions of unperturbed cases were
used as the perturbed model's initial conditions for
drawing Earth-Moon system Lyapunov orbits.
Lyapunov orbits in the vicinity of the Libration point
L, (a), Lyapunov orbits in the vicinity of the Libration
point Lz (b), and Lyapunov orbits in the vicinity of the
Libration point L3 (c).

Applying the effect of perturbations of both oblate
primaries is the main reason for the changes in the
initial conditions of Lyapunov orbits in the P-
CRTBP, which, as shown in Figure 10, has a
significant effect on the temporal behavior of these
reference trajectories.

Obtaining mean orbital error in the P-CRTBP
relative to U-CRTBP can illustrate the effect of
perturbations of both oblate primaries during one
orbital period. This error was obtained by
averaging the state parameter errors at 100 points
in both models concerning identical initial guesses
of both models (orbital correction algorithm
inputs).
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Table 4. Mean error Ag,, of orbital state parameters in
the unperturbed model relative to the perturbed model.
This error is obtained by averaging the state parameter
errors at 100 points of the orbit concerning the
identical initial guesses of both models.

OI‘bit AEavx AEavy AEavvx AEa.vvy t

(km) (km) | (km | (km | (ndim)
/h) /h)
L(1:1)] 01582 01742 | 0.0096 | 0.0141 | 3.95
L(1:2)| 02018 02291 | 0.0132 | 0.0173 | 4.4
L(1:3)] 02374 02582 | 0.0159 | 0.0202 @ 4.6
L(1:4)| 03600 04269 | 0.0276 | 0.0308 | 5.31
L(1:5)) 05852 08470 | 0.0442 | 0.0617 | 6.1
L(2:1)] 03369 0592 | 0.0379 | 0.0442 | 431

L(2:2)| 03117 | 05170 | 0.0326 | 0.037 4.46

L(2:3)| 02823 | 03414 | 0.0256 | 0.0221 | 4.69
L(2:4)| 05792 | 04639 | 0.0538 | 0.0435 | 5.12
L(2:5)| 12848 | 2.1180 | 0.1813 | 0.1471 | 5.315
L(2:6)| 40045 | 61486 | 1.1655 | 0.3515 | 6.47
L(3:1)| 00139 | 0018 | 0.0019 | 0.0004 | 6.23
L(3:2)] 003 | 006 0.0%21 0.01)22 6.25
L(3:3)| 00605 | 00788 | 0.0047 | 0.0045 | 6.288

Table 4 shows that the mean error in Lyapunov
orbits in the vicinity of L; and L; is directly related
to the orbital period. It means that, in the orbit
families of these points, the mean error is increased
with increasing the orbital period. This behavior is
also true in the first three orbits of the Lyapunov
orbit family in the vicinity of the, but after the
fourth period, the opposite happens, meaning that
the mean error is decreased with increasing the
orbital period. This indicates the chaotic behavior
of orbits in the vicinity of L, Libration point.

Conclusion

The main aim of this paper was to study the effect
of the perturbations of both oblate primaries on
periodic orbits in the Circular Restricted Three-
Body Problem. The equations of orbital motion in
the P-CRTBP were elicited by employing
Lagrangian mechanics. Due to the lack of closed-
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form solutions, we were required to use a
numerical method. Numerical methods are highly
dependent on initial conditions of state parameters
and can have periodic or quasi-periodic answers
depending on the different initial conditions. In
this paper, an orbital correction algorithm was
proposed to correct the initial conditions of orbital
state parameters which led to obtaining the initial
conditions of periodic answers. It was shown that
the accuracy of the dependency of periodic
solutions on initial conditions is up to seven digits.
Next, periodic orbits in the P-CRTBP and U-
CRTBP were compared in order to show the effect
of perturbations of oblate primaries. Using the
initial conditions of U-CRTBP periodic orbits in
the P-CRTBP environment indicated that the
existing orbits diverge from their periodic form,
showing perturbations' effect on the P-CRTBP.
Obtaining the mean error based on the initial
guesses of both perturbed and unperturbed models
illustrates the effect of perturbations during one
orbital period as well. Applying the perturbations
to the Circular Restricted Three-Body Problem
model can bring the study environment to the real
environment, which results in a more accurate
simulation of the motion of satellites. This is
considered a step forward in solving such
problems.
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