Document Type : Original Article

Authors

1 K. N. Toosi University of Technology, Faculty of Aerospace Engineering, Tehran, Iran

2 K. N. Toosi University of Technology, Faculty of Aerospace Engineering

Abstract

The nozzle, an end-element of the propulsive process Cycle, represents a critical part of any aerospace vehicle. The task of accelerating and efficiently exhausting combusted and reactive gases according to the delivered thrust represents the main objective of the propulsion system design. Flow separation in supersonic convergent–divergent nozzles has been the subject of several experimental and numerical studies in the past. Now, with the renewed interest in supersonic flights and space vehicles, the subject has become increasingly important, especially for aerospace applications (rockets, missiles, supersonic aircrafts, etc). Flow separation in supersonic nozzles is a basic fluid dynamics phenomenon that occurs at a certain pressure ratio of chamber to ambient pressure, resulting in shock formation and shock/turbulent-boundary layer interaction inside the nozzle. From purely gas-dynamics point of view, this problem involves basic structure of shock interactions with separation shock, which consists of incident shock, Mach reflections, reflected shock, triple point and slip lines. In this article A Review on Flow Separation Phenomenon for Supersonic Convergent–Divergent Nozzles has been investigated.

Keywords

Main Subjects

[1] A Hadjadj, M Onofri’’Nozzle flow separation’’Shock Waves (2009) 19:163–169 DOI 10.1007/s00193-009-0209-7.
[2] Lawrence, R.A.: Symmetrical and unsymmetrical flow separation in supersonic nozzles. Research Report Number 67-1, Southern Methodist University (1967)           .
[3] Verma, S.B.: Study of flow separation in truncated ideal contour nozzle. J. Propuls. Power 18, 1112–1121 (2002).
[4] Nave, L.H., Coffey, G.A.: Sea-level side loads in high-area-ratio rocket engines. AIAA Paper 73-1284 (1973)
[5] Craig A. Hunter,NASA Langley Research Center, Hampton, Virginia 23681’’Experimental Investigation of Separated Nozzle Flows’’JOURNAL OF PROPULSION AND POWER Vol. 20, No. 3, May–June 2004.
[6]    Nguyen, A.T., Deniau, H., Girard, S., Alziary de Requefort, T.: Unsteadiness of flow separation and end-effects regime in a thrust optimized contour rocket nozzle. Flow Turbul. Combust. 71, 1–21 (2003).
[7] Hagemann, G., Frey, M., Koschel, W.: Appearance of restricted shock separation in rocket nozzles. J. Propuls. Power 18, 577–584 (2002).
[8]  Ostlund, J.: Flow processes in rocket engine nozzles with focus on flow-separation and side-loads. Ph.D. Thesis, Royal Inst. of Tech., Stockholm, TRITA-MEK (2002).
[9] Chen, C.L., Chakravarthy, S.R., Hung, C.M.: Numerical investigation of separated nozzle flows. AIAA J. 32, 1836–1843 (1994).
[10] Gross, A.,Weiland, C.: Numerical simulation of separated cold gasnozzle flows. J. Propuls. Power 20, 509–519 (2004).
[11] Deck, S., Nguyen, A.T.: Unsteady side loads in a thrust-optimized contour nozzle at hysteresis regime.AIAAJ. 42, 1878–1888 (2002).
[12] Nasuti, F., Onofri,M.: Viscous and inviscid vortex generation during start-up of rocket nozzles. AIAA J. 36(5), 809–815 (1998).
[13] Morí˜nigo, J.A., Salvá, J.: Three-dimensional simulation of the self-oscillating flow and side-loads in an over-expanded subscale rocket nozzle. J. Aerosp. Eng. 220(G), 507–523 (2006).
[14] Schmucker, R.H.: FlowProcess inOverexpandedChemical Rocket Nozzles. Part 2: Side Loads due to Asymmetric Separation. NASA TM-77395 (1984).
[15] Jan Östlund, ’’ FLOW PROCESSES IN ROCKET ENGINENOZZLES WITH FOCUS ONFLOW SEPARATION AND SIDE-LOADS’’TRITA-MEK Technical Report 2002:09ISRN KTH/MEK/TR--02/09-SE.
[16]  Mattsson, J., Hogman, U., Torngren, L.: A Sub Scale Test Programme on Investigation of Flow Separation and Side Loads in Rocket Nozzles. In: Proceedings of the 3rd European Symposium on Aerothermodynamics for Space Vehicles, pp. 373–378. 24–26 November 1998, ESTEC, ESA SP-426, Noordwijk, The Netherlands (1998).
[17]  Reijasse, P., Servel, P., Hallard, R.: Synthesis of the 1998-1999 ONERA Works in the FSCD Working Group. Tech. Rep. RTS 49/4361 DAFE/Y, ONERA, Chatillon Cedex, France (1999).
[18]  Frey,M., Stark, R., Ciezki, H.K., Quessard, F., Kwan,W.: Subscale Nozzle Testing at the P6.2 Nozzle Stand. AIAA Paper 2000- 3777, 36thAIAA/ASME/SAE/ASEE Joint Propulsion Conference (2000).
[19]  Frey, M., Hagemann, G.: Restricted shock separation in rocket nozzles. J. Propuls. Power 16(3), 478–484 (2000).
[20]  Hagemann, G., Frey, M.: Shock pattern in the plume of rocket nozzles: needs for design consideration. Shock Waves 17(6), 387–395 (2008).
[21] Nasuti, F., Onofri, M.: Viscous and Inviscid Vortex Generation During Nozzle Flow Transients. AIAA Paper 96-0076, 34th AIAA Aerospace Sciences Meeting and Exhibit (1996).
[22] Onofri, M., Nasuti, F., Bongiorno, M.: Shock Generated Vortices and Pressure Fluctuations in Propulsive Nozzles. AIAA Paper 98-0777, 36th AIAA Aerospace Sciences Meeting and Exhibit (1998).
[23] Onofri,M., Nasuti, F.: The Physical Origin of Side Loads in Rocket Nozzles. AIAA Paper 99-2587, 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference (1999).
[24] Courant, R., Friedrichs, K.O.: Supersonic Flow and ShockWaves, vol. 21. Springer, Berlin (1999).
[25] Terhardt, M., Hagemann, G., Frey, M.: Flow Separation and Side- Load Behavior of the Vulcain Engine. AIAA Paper 99-2762, 35th AIAA/ ASME/ SAE/ ASEE Joint Propulsion Conference (1999).
[26] Ostlund, J., Jaran, M.: Assessment of Turbulence Models in over expanded Rocket Nozzle Flow Simulations. AIAA Paper 99-2583, 35th AIAA/ ASME/ SAE/ASEE Joint Propulsion Conference
(1999) .
[27] Girard, S., Alziary de Roquefort, T.: Study of flow separation in over expanded rocket nozzles. Fourth French–Russian–Italian– Uzbeck Workshop, Marseille, France (1997).
[28] Deck, S., Guillen, P.: Numerical Simulation of Side Loads in an Ideal Truncated Nozzle. J. Propuls. Power 18(2), 261–269 (2002).
[29] Kwan,W., Stark, R.: Flow separation phenomena in subscale rocket nozzles. AIAA 2002-4229, 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2002).
[30] Stark, R., Wagner, B.: Experimental study of boundary layer separation in truncated ideal contour nozzles. ShockWaves, (2009).
[31] Mouronval, A.-S., Hadjadj, A.: Numerical Study of the Starting Process in a Supersonic Nozzle. J. Propuls. Power 21(2), 374–378 (2005).
[32] Ostlund, J., Damgaard, T., Frey, M.: Side-loads phenomena in highly over-expanded rocket nozzles. AIAA Paper 2001-3684 (2001).
[33] Stark, R., Kwan, W., Quessard, F., Hagemann, G., Terhardt, M.: Rocket nozzle cold gas test campaigns for plume investigations. In: Proceeding of the Fourth European Symposium on Aerothermodynamics for Space Vehicles (2001).
[34] Tomita, T., Sakamoto, H., Onodera, T., Sasaki, M., Takahashi, M., Tamura, H., Watanabe, Y.: Experimental evaluation of side-loads characteristics on TP, CTP and TO nozzles. AIAA Paper, 04-3678 (2004).
[35] A.A.Khan and T.R.Shem bharkar, 2008, Viscous flow analysis in a convergent – Divergent nozzle, International Journal of Computational Engineering Research, IJCERonline, India, Volume 3, No. 5, pp. 5-15.
[36] Adamson, T.C., Jr., and Nicholls., J.A., “On the structure of jets from Highly underexpanded Nozzles into Still Air,” Journal of the Aerospace Sciences, Vol.26, No.1, Jan 1959, pp. 16-24.
[37] Lewis, C. H., Jr., and Carlson, D. J., “Normal Shock Location in underexpanded Gas and Gas particle Jets,” AIAA Journal, Vol 2, No.4, April 1964, pp. 776-777.
[38] Martelli, E., Nasuti, F., Onofri, M.: Numerical calculation of FSS/RSS transition in highly over expanded rocket nozzle flows. Shock Waves (2009, submitted).
[39] Perrot, Y., Hadjadj, A.: Numerical simulation of transient nozzle flows. Shock Waves (2009, submitted).
[40] Papamoschou, D., Zill, A., Johnson, A.: Supersonic flow separation in planar nozzles. Shock Waves (2009, this issue).
[41] Verma, S.B.: Shock unsteadiness in a thrust optimized parabolic nozzle. Shock Waves (2009, this issue).
[42] Tomita, T., Takahashi, M., Sasaki, M., Sakamoto, H., Takahashi, M., Tamura, H.: Experimental evaluation of sideloads in LE-7A prototype engine nozzle. Shock Waves (2009).
[43] Nurnberger-Genin, C., Stark, R.: Flow transition in dual bell nozzles. Shock Waves (2009).
[44] Hadjadj, A., Kudryavtsev, A.: Computation and flow visualization in high-speed aerodynamics. Journal of Turbulence 16(6), 1–25 (2005).
[45] CNES(ed.): Proceedings of 2nd FSCD/ATACWorkshop on Nozzle FlowSeparation, ESA/ESTEC, 15–16 November, The Netherlands (2006).
[46] Nasuti, F., Onofri, M.: Shock structure in separated nozzle flows. Shock Waves (2009).
 [47]   Wang, T.-S.: Transient three-dimensional startup side load analysis of a regeneratively cooled nozzle. Shock Waves (2009).
[48] Deck, S.: Delayed detached eddy simulation of the end-effect regime and side loads in an overexpanded nozzle flow. ShockWaves (2009).
[49] Nguyen, A.T.,Deniau, H.,Girard, S., Alziary deRoquefort,T.:Wall pressure fluctuations in an over-expanded rocket nozzle. AIAA Paper 2002–4001 (2002).
[50] Girard, S.: Etude des charges latérales dans une tuyère supersonique surdétendue. Ph.D Thesis, University of Poitiers, France (1999).
[51] Salmon, J.T., Bogar, T.J., Sajben, M.: Laser Doppler velocimeter measurements in unsteady, separated transonic diffuser flows. AIAA J. 21(12), 1690–1697 (1983).
[52] Sajben, M., Bogar, T.J., Kroutil, J.C.: Forced oscillation experiments in supercritical diffuser flows. AIAA J. 22(4), 465–474 (1984).
[53] Dupont, P., Haddad, C.,Debiève, J.-F.: Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255–277 (2006).
[54] Ganapathisubramani, B., Clemens, N.T., Dolling, D.S.: Effects of upstream boundary layer on the unsteadiness of shock-induced separation. J. Fluid Mech. 585, 369–394 (2007).
[55] C. Pilinski, A. Nebbache, Flow separation in a truncated ideal contour nozzle, J. Turbul. 5 (2004) 014.
[56] A. Nebbache, C. Pilinski, Pulsatory phenomenon in a thrust optimized contour nozzle, Aerosp. Sci. Technol. 10 (2006) 295–308.
 [57] Frey, M. and Hagemann, G., ’’Status of Flow Separation Prediction in Rocket Nozzles’’, AIAA 98-3619, 1998   .
  [58] Terhardt, M., Hagemann, G., and Frey, M., ’’Flow Separation and Side-Load Behaviour of theVulcain Engine’’, AIAA 99-2762, 1999.
   [59]  Mattsson, J. (changed name to Östlund 1999), Högman, U., and Torngren, L., ’’A Sub-Scale TestProgramme on Investigation of Flow Separation and Side-Loads in Rocket Nozzles’’, Proceedings ofthe 3rd European Symposium on Aerothermodynamics of Space Vehicles, ESA-ESTEC,Netherlands, November 24-26, 1998.
[60] Chuan Tian & Yijia Lu’’Turbulence Models of Separated Flow in Shock Wave Thrust Vector Nozzle’’
         Pages 182-192 | Received 27 Mar 2012, Accepted 22 Nov 2012, Published online: 19 Nov 2014 .
[61]M. Sellam,G. Fournier,A. ChpounPh. Reijasse’’Numerical investigation of overexpanded nozzle flows’’January 2014, Volume 24, Issue 1, pp 33–39.
[62] Habibi Omid, Ebrahimi Reza, KarimiMazraehshahi Hasan, “A review on investigation and analysis of flow separation for supersonic convergent–divergent nozzles”, 18th Int. Conference of Iranian Aerospace Society, Feb.2020.
[63] Guillaume Daviller , Jérôme Dombard , Gabriel Staffelbach , Julien Herpe & Didier Saucereau: Prediction of Flow Separation and Side-loads in Rocket NozzleUsing Large-eddy Simulation, International Journal of Computational Fluid Dynamics, DOI:10.1080/10618562.2020.1786540,2020.
[64] Vladeta Zmijanović, Boško Rašuo, Amer Chpoun’’Flow Separation Modes and Side Phenomena in an Overexpanded Nozzle’’FME Transactions (2012) 40, 111-118,