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In this paper, a new method for optimal guidance in the atmospheric return phase is
proposed. This guidance method is based on instantaneous and online trajectory optimization
in which optimal guidance commands are obtained from sequential solving of optimal control
problems. In order to solve optimal control problems quickly and online, a combined approach
including the concepts of differential flatness, B-spline curves, direct collocation, and non-
linear programming is used. By performing the trajectory optimization process in the form of
closed-loop control and implementing the receding horizon control, the open-loop responses
of optimal control can be dependent on the instantaneous conditions of the object and the target.
In this case, guidance commands can be generated based on various objective functions and
constraints, and model uncertainties can be considered by entering the vehicle conditions into
the trajectory optimizer. In order to show the capabilities of the proposed guidance method, a
numerical example of the guidance of a reentry vehicle in the presence of model uncertainties
is presented.
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typically used to guide the vehicle in the
atmospheric return phase. Early and classical

Introduction

Guidance of spacecraft in the Earth's atmospheric
return phase is a major challenge for designers of
optimal trajectories and guidance laws. The
structural limitations of the vehicles and their
mission requirements cause a great deal of
sensitivity to the accuracy of the guidance laws. In
vehicles such as research spacecraft and bio
capsules, the return trajectory should be such that
a smooth and slow landing of objects is achieved
on the ground, and in vehicles such as warheads,
the return trajectory should be such that the vehicle
is at maximum velocity and hits the target in the
shortest time. Hence, the nature of the vehicles and
their missions outline the goals of the guidance
process for designers. In the last half-century,
various guidance laws have been proposed for the
guidance of aerospace vehicles, which are

1 Assistant Professor

Received: 20 Feb. 2020
Accepted: 21 May 2020

guidance laws are generally based on the geometry
and kinematics of vehicles and targets. Laws such
as pursuit, proportional navigation, and other types
derived from these laws (such as PPN, TPN, and
IPN) fall into this category [1]. The output of these
laws is the acceleration commands of the vehicle
that can guide the vehicle to the target. New
control laws are generally derived from the theory
of optimal control. By using optimal control, it is
possible to achieve optimal guidance of vehicles.
Optimal control can also be used for demonstrating
the optimality of some classical guidance laws [¥].

In 1965, for the first time, the problem of optimal
flight of spacecraft in the atmospheric return phase
was solved using optimal control [3]. Of the
significant work that has been done in recent years
in this regard, we can refer to the work carried out
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by Eisler and Hull [4-6]. In [4], the researchers
were able to use the feedback control method of
the sampled data to maximize the impact velocity
of the vehicle to hit a specified target and achieve
a near-optimal response. In [#,5], using the inverse

method and Bezier curve, an explicit guidance law
is developed for the problem raised in [4]. In order
to achieve analytical solutions, most of the new
guidance laws are derived from the analytical
solution of optimal control problems. In these
laws, analytical solutions are obtained based on
various hypotheses and simplifications. By
eliminating these simplifications and defining the
guidance problem in its most general form in
three-dimensional space and with a non-linear
dynamic model, a complex non-linear optimal
control problem is obtained that has no analytical
solution. The numerical solution of this problem is
also an open-loop that is not directly dependent on
the state variables and, unlike the classical
guidance laws, is not a closed-loop and feedback
response. Therefore, we should look for a structure
that makes the generated solutions of the optimal
control problem dependent on the state variables
and make the guidance structure closed-loop.
Successful implementation of such an approach
requires a very fast and accurate solving of the
problem of optimal control. If the problem can be
solved online in a short period of time, the optimal
control commands can be applied to the vehicle,
and the vehicle state variables can be fed back to
the optimal control problem solver. This closed-
loop structure can be implemented in the form of
methods such as predictive model control
(receding horizon control).

In this paper, we want to define the problem of an
optimal guidance of a warhead in the atmospheric
return phase and solve it with a combined method.
In this method, by combining different concepts
such as differential flatness, B-spline curves, direct
collocation, and non-linear programming, a new
approach is used to quickly, accurately, and online
solve optimal control problems. In the combined
method, the optimal guidance problem is
formulated based on the concept of differential
flatness to define the problem in the minimum
dimensional space and with the minimum number
of variables and constraints. Then, the variables
used are approximated by B-spline curves to
express continuous variables over time with
discrete values. For applying point and path
constraints in this approach, the concept of direct
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collocation is used. That is, constraints are applied
and satisfied at certain points in time called nodes.
After performing these steps, the discrete problem
of optimization is obtained, which can be solved
by conventional non-linear  programming
methods. By creating a closed-form control loop
based on the principles of receding horizon control
and considering the trajectory optimizer section as
a non-linear controller, the instantaneous
conditions of the vehicle and the target can be
entered into the optimizer section, and optimal
guidance commands can be obtained for a specific
time horizon and applied in a small part of the time
horizon. By repeating this procedure and solving
the problem of optimal guidance several times, it
is possible to generate guidance commands online
and based on the instantaneous conditions of the
vehicle and the target.

Definition of the optimal guidance problem in
the atmospheric return phase

In recent decades, the issue of spacecraft optimal
flight in the phase of returning to the Earth's
atmosphere has been considered by various
researchers around the world, and various
approaches have been proposed to formulate and
solve this problem. One of the important views in
defining this issue is its expression in the form of
an optimal control problem. Using the concepts of
optimal control theory, the problem can be defined
and solved with acceptable accuracy, and at the
same time, conventional simplifications cannot be
used to solve guidance problems. That is, the
problem can be defined in a more complex form,
and a closer solution to reality can be obtained for
it. According to work done in this field, the general
form of the guidance problem based on optimal
control can be assumed as follows:

"After returning to the atmosphere, we want to
determine the flight trajectory of a spacecraft to
optimal reach to a target such that the vehicle
satisfies the trajectory constraints (structural and
mission constraints) despite model uncertainties
and perturbations."

To express such a problem mathematically, we
must first determine the motion equations of the
vehicle in the state space and then define the
optimal control problem based on it. By
determining the motion equations, the state and
control variables are also specified, and the
trajectory constraints, point constraints, and
objective function can be defined according to the
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problem situation. In the present paper, to express
the dynamic model of the guidance problem, we
use two-dimensional motion equations of the
vehicle in the inertial coordinate system.

Due to the increasing costs and environmental
challenges that lie ahead of increasing the planes;
efficiencies, plane manufacturers have been under
a lot of pressure. One of the main factors that
contributes to this problem is the high price of fuel,
the need for lower pollutants and the demand for
creating environmental-friendly airplanes that help
to lower the effects of global warming [1].in the
field of aerospace engineering, drag reduction
poses a great and challenge for engineers, so it
could still be improved and novel ideas and
creative works could still change the fate of this
field [2]. The flow over the wing of an airplane is
a three-dimensional; that is, a factor of the flow is
aligned with the wingspan. the difference in
pressure distribution results into the creation of lift
force. In addition, this pressure differential
between upside and downside of the wings,
transfers the high-pressured flow which is below
the wings to the above-surface of the upper wing,
creating a vortex on both wing-edges of the
airplane [3]. In aviation and aerospace, the
existence of such vortices is dangerous and causes
air traffic for the airports. These vortices are so
strong that it takes at least 2 minutes for them to
weaken and shed. This two-minute time is actually
the time gap between two landings and takeoffs in
an airplane [4]. These vortices finally lead to the
induced drag force, which its reduction is one of
the primary goals. reducing the drag can be
beneficial and reduce fuel-consumption and
increase the flight range. In fact, these
environmental challenges and functional costs
have impelled the aviation industry into finding
new ways to increase the efficiency and frugality
of commercial air transportation, which in turn
have resulted into emergence of some novel and
innovative ways for reducing induced drag [5].

V, =—Lsin(y— )/ M — Dcos(y— B)/ M — gsin (1)
V}.=+Lcos(}/—,B)/M—Dsin(}'—ﬂ)/M—gcos,B (2)
=7, (3)
=ty 4)

Where x and y indicate the position of the vehicle,
and Vrand V), represent the velocity components of
the vehicle in the inertial coordinate system.
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According to Figure 1, the 8 and y angles can be
calculated as follows:

p=tan”! (—] 5)

y

y= tan~! {%Jtﬁ ©)

y
Where M is the mass of the vehicle and g is the
gravity acceleration, which can be calculated using
the following equations:

R= \/xz + y2 (7
2
g=98l (RTE) ®)

Where R is the distance of the vehicle

from the center of the Earth and Ry is the average
radius of the Earth. Lift (L), drag (D), and weight
(M,) are the forces acting on the vehicle, as shown
in Figure 2.

The following equations can be used to calculate
the values of lift and drag forces:

2
L=05pV=SCy, 9)

o 2
D=0.5pV*SCp (10
Where S is the reference surface, p air density, and
V' is the velocity of the vehicle. The velocity and
height (H) of the vehicle can be calculated using
the following equations:

V=V 47,2 (1)

H=R-R; (12)
By having the vehicle height and standard
atmospheric model, air density and velocity of
sound (¢) can be determined. By using the velocity
of sound and the velocity of the vehicle, the Mach
number can be calculated:

Mach=V/c (13)

Lift (Cr) and drag(Cp) coefficients are calculated
from the following equations:
CL = CL,,a'

, (14)
Cp =Cpy+Cpyor” (15)
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Figure 1- Definition of variables in the inertial
coordinate system

L

Figure 2- Applied forces on the vehicle

The aerodynamic coefficients can be calculated
using Mach number and in accordance with the
aerodynamic model of the vehicle. In these
equations, «is the attack angle of the vehicle,
which is the control variable of the equations of
motion. By determining the time history of «, the
vehicle can be guided to various targets. In the
stated dynamic model, there are four state
variables (x, y, Vx V) ) and a control variable («).
In a guidance problem, the main objective is
reaching the vehicle to the target. Accordingly, in
addition to the initial conditions of the vehicle, the
final conditions of the vehicle are also specified at
the end of the mission. In addition to this main
objective, other objectives can also be considered.
For example, maximizing collision velocity,
maximizing longitudinal range, minimizing time,
and so on can be considered mission objectives. In
a guidance problem, various constraints and
limitations can also be defined. For example,
restrictions can be considered for control variables
or structural and mission considerations of the
vehicle, which can be expressed in the form of
constraints. By determining the angle of attack
during the mission time, the vehicle can be aimed
at the target. If the angle of attack is considered
zero, i.e., the vehicle moves without applying
control commands, the nominal trajectory of the
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vehicle is obtained. For this purpose, we consider
the following basic conditions:

Hyon =90 km , Vo = 3600 m/s , yom =-30°, Buom = 0°
By considering the above values, the initial values
of the state variables can be obtained as follows:

Ve=3117.69 m/s , V= -1800 m/s , x = 0 km , y = 6460 km

By solving the motion equations with the above
initial conditions, the nominal trajectory of the
vehicle is obtained, which is shown in Figure 3.
Figure 4 also shows the changes in state variables
with time. The collision point of the vehicle with
the ground is obtained in the coordinates x =
140.80 km and y = 6368.44 km. If we consider the
vehicle's collision with this point as the target of
guidance, we must look for the law that can guide
the vehicle to the specified target despite the
uncertainties of the model and the perturbations.

Figure 4- Variation of state variables with respect to
time
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An online combined method for solving optimal
control problems:

In general, there are three common methods for
solving optimal control problems, which are: the
indirect method, direct shooting method, and
direct collocation method.

Other solution methods are somehow developed or
a subset of these three methods. Among these
methods, the direct collocation method has a
higher solution velocity due to its completely
numerical solution structure. In this method, by
completely  discretizing the problem and
converting differential and integral equations to
simple algebraic equations, it is possible to use
non-linear programming methods. This method
leads to a discrete solution and, due to the
production of a large number of variables and
optimization constraints in it, cannot be
implemented online. [7,8] In recent years, a
combined method has been proposed to develop a
direct collocation method that allows it to be used
online. [9] The combined method for online
trajectory  optimization is based on the
simultaneous use of the concepts of differential
flatness, B-spline curves, direct collocation, and
non-linear programming. In this approach, by
using the concept of differential flatness, the
dimensional space of the trajectory optimization
problem is reduced, and the problem is expressed
with the minimum number of variables and state
equations. Also, by using B-spline curves, despite
maintaining the discrete nature of the optimization
variables, a continuous concept of the solution is
obtained, and the role of time nodes in
approximating the differential and integral
expressions of the problem is eliminated. In this
approach, by using the concept of collocation and
time nodes, the path and point constraints are
applied in time nodes. Finally, the control points
of B-spline curves are considered non-linear
programming optimization variables. Due to the
very fast solution of the trajectory optimization
problem with the mentioned approach, it is
possible to implement it online in the form of
guidance and control loops.

In the following, each component of the combined
method will be discussed in detail, and the role of
these components in providing the possibility of
online trajectory optimization will be explained.
In the classical direct collocation method, the
collocation process is applied to all state and
control variables. This causes a large number of
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optimization variables and constraints to be
generated. In recent years, a group of researchers
has shown that by removing control variables from
state equations, the collocation process can be
applied only to state variables, and after
convergence and problem-solving, using the
optimal values calculated for state variables, the
optimal values of control variables can be
calculated. [10] This approach is called the inverse
method. In the inverse method, first, using state
equations, the existing equation between control
variables and their first-order derivatives of state
variables and time are obtained. Then, the
remainder of the equations of state is rewritten
according to the obtained equation. In this method,
the finite difference method is used to calculate the
derivatives of state variables. The advantage of the
inverse method is the removal of control variables
from the collocation, convergence, and solution
processes. In this method, the state equations that
are used to obtain equations between the state and
control variables are also eliminated. Using this
method is somewhat effective in accelerating the
solution. However, in recent years, another group
of researchers has shown that in addition to control
variables, some state variables can be eliminated
from the problem, and the collocation process can
be applied only to the remaining state variables.
After solving, the optimal values of the eliminated
state and control variables can be calculated using
the existing equations. The latter approach is only
possible in differentially flat non-linear systems. A
non-linear dynamic system is differentially flat
when there is a variable change for it as
follows[10]:

q=h(x,u,u,i,...) (16)

So that the state (x) and control () variables can
be obtained as follows:

(x,u) = W(q, 4. §>...) an

The variables q can be equivalent to some state
variables or a combination of them. These
variables are not necessarily sensor-readable
variables and are known as flat outputs.

A remarkable feature of flat systems is that the
whole behavior of the system can be expressed
without integration and only using flat outputs and
a limited number of their time derivatives.
However, it should be noted that due to the use of
derivatives of flat outputs, using the finite
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difference method for calculating derivatives will
no longer be reasonable.

If the concept of differential flatness is used in
trajectory optimization, the collocation and
approximation process can be applied only to flat
outputs instead of all state and control variables.
By doing this, a drastic reduction in the number of
optimization variables occurs. Also, due to the use
of state equations to obtain the equations between
flat outputs and other state variables and problem
control, a number of state equations are practically
eliminated, which greatly reduces the number of
optimization constraints.

An interesting advantage of using the concept of
differential flatness in trajectory optimization is
that the number of variables and equations are
reduced together. This simultaneous reduction
causes a significant reduction in the Hessian of
Lagrangian function matrix. According to the
time-consuming calculations of these matrices
(about 70% of the solution time), this reduction has
a significant effect on increasing the solution
speed.

The lack of a systematic method for detecting
differential flatness of a system, as well as the lack
of a suitable algorithm for determining the
minimum flat outputs, make it difficult to use
differential flatness to optimize the trajectory. It
should be noted that in the combined approach, we
use only the concept of differential flatness. In this
approach, the flatness of the system is not
important. That is, even if the system was non-flat,
we still identify the flat outputs and obtain other
state and control variables based on the flat
outputs. The only difference here is that if the
system is non-flat, we will have equations of state
in the reduced space of the problem. Therefore, to
use the concept of differential flatness in trajectory
optimization, there is no need to distinguish
between differentially flat and non-flat systems.
In conventional dynamical systems, the
determination of flat outputs by trial and error is
not very complicated. Positional variables are
usually the best choice for flat outputs. Because by
having the time function of positional variables,
the values of other state and control variables can
be obtained at different times. In fact, if the
physical trajectory taken by a vehicle is known, its
state and control variables can be calculated.
Therefore, to use the concept of differential
flatness in trajectory optimization, there is no need
to develop a special algorithm to determine flat
outputs.
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In the direct collocation method, the state and
control variables are approximated as a set of
discrete points. This causes the nature of the
solution to be discrete, and it is not possible to
calculate the derivative and integral of the
functions accurately. This problem becomes even
more acute if the concept of differential flatness is
used because, in that case, it is not possible to
calculate the higher derivatives with discrete
points accurately. This discretization converts the
problem of trajectory optimization to a non-linear
programming problem, and it is impossible to
ignore it. One solution to this problem is to use
curves. In curves, although coefficients or control
points are discrete values, they generate a
continuous concept. If the state and control
variables are approximated to the curves, the
problem discreteness is maintained due to the
discontinuity of coefficients or control points, and
it is also possible to calculate derivatives and
integrals accurately due to having the curve
functions. In the combined method, we use B-
spline curves to approximate the variables of the
trajectory optimization problem. These curves are
an interconnected set of Bezier curves[11]:

n
x(t) = Z Bi  ()C;

i=0
The equations of B-spline curves consist of two
parts: basis functions (B;«(¢)) and control points
(C)). In order to calculate the basis functions of a
B-spline curve, the number of Bezier curves and
their degrees must be determined in proportion to
the complexity of the expected trajectory for the
approximated variable. Then, the time period
should be divided according to the number of
Bezier curves. The time points are called nodes.
By placing the time values of the nodes in a vector,
the node vector () is formed:

o Ststy (18)

T=[10.00,-- . In-1,1n] (19)

In a node vector, a value of time may be repeated
several times in a row, which is called the number
of repetitions. The difference between the order of
the curve (ki) and the number of corresponding
nodes (m;) determines the degree of smoothness
(s):
si=k;—m; (20)

The value of smoothness indicates the

level of continuity in the node, which is equal to
the order of derivation. Therefore, the level of
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continuity in nodes can be applied in the definition
of the node vector by repeating the time values of
the nodes. It should be noted that the order of the
curve is equal to the value of the degree of the
curve plus one.

By having the order of the curves (k), the number
of the curves (1), and the smoothness of the nodes
(s), the number of control points (p) can be
determined.

P=lk—s)+s (21)
Once the above cases are known, the
basis functions can be calculated using the
following equations:

B ()= 1 ift;<t<tyy
G0N 0 otherwise (22)
t—t, tisk —1
Bix(n)= L By pa )+ B ()
livk+l — i livk —li+] (23)

The control points in a B-spline curve

are the points around the curve that form the curve
and literally control the curve. The control points
in B-spline curves, such as polynomial
coefficients, are discrete values that generate a
continuous concept. In approximating the state and
control variables, these control points can be
considered optimization variables. B-spline curves
behave quite locally. By changing one of the
control points, depending on the degree of the
curve, only the shape of the curve in the vicinity of
the control point changes, and the rest of the curve
remains unchanged. Also, the range of changes of
control points in B-spline curves is the same and is
approximately equal to the range of changes of the
approximated variable. If B-spline curves are used
to approximate the variables of the trajectory
optimization problem, the accurate calculation of
the time derivatives is easily possible due to the
specificity of the time derivatives of B-spline
curve functions. B-spline curves, due to the
optimal approximation of complex trajectories,
discreteness of control points, expression of a
continuous concept, no need to define continuity
constraints, completely local behavior, and the
same range of changes of control values with
approximated variables, are very suitable curves
for approximating state variables and control in
trajectory optimization.

In the direct collocation method, time nodes are
used for two purposes. The first purpose is to
approximate differential and integral expressions.
Hence, to achieve better approximations, a large
number of time nodes must be selected. Another
purpose is to apply constraints to the trajectory
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optimization problem [1v]. If B-spline curves are

used, the role of time nodes in the approximation
of differential and integral expressions is
eliminated, and time nodes are used only to apply
the constraints of the problem. This eliminates the
need to use a large number of time nodes.

For solving the problem of trajectory optimization
by the combined method, the flat outputs
determined from the differential flatness are
approximated by B-spline curves. By doing this,
the control points of the mentioned curves are
considered optimization variables of the non-linear
programming problem. During the solution
process, depending on the value of the
optimization variables in each iteration, the control
points of the B-spline curves are specified. By
knowing these points and consequently the
functions of the curves, the values of other state
and control variables can be calculated. By
applying the remaining state equations to time
nodes (collocation points), virtually all state
equations are applied to the problem. In addition to
the residual state equations, trajectory constraints
are applied to time nodes. After convergence and
solving the non-linear programming problem, the
optimal values of the control points are obtained in
such a way that the state equations and the
trajectory constraints are satisfied in the time
nodes, and the objective function is minimal. In
order to scale, bound, and generate optimization
variables (control points of B-spline curves), the
same mechanisms of the classical direct
collocation method can be used because the
control points with flat outputs are approximately
the same sizes.

Using the concept of differential flatness in direct
collocation, by reducing the dimensional space of
the trajectory optimization problem, the number of
variables and optimization constraints of the non-
linear programming problem decreases, and the
solution speed increases. By using B-spline curves
in direct collocation, a continuous approximation
of variables is created, and the need to use more
time nodes to increase the accuracy of the
approximation is eliminated.

This combined method, regardless of the
possibility of online trajectory optimization, is also
important and valuable. That is, even if it is used
as an offline method, it is more desirable and
accurate than conventional trajectory optimization
methods. This is in contrast to other online
trajectory optimization approaches, which are not
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interesting to use offline. In the combined method,
the accuracy has not been sacrificed for the speed
of solving, and both of them are simultaneously
improved. In this approach, due to the benefit of
the concept of differential flatness, the equation
between variables is established with time
derivatives and based on an analytical equation,
while in the classical direct collocation method,
the equation between variables is established by
applying discrete equations in consecutive time
nodes. As a result, the accuracy of the solution is
higher in the combined approach. The solution
speed is also much higher than the classical direct
collocation method due to the reduction of the
number of optimization variables and constraints.

In this paper, we use IPOPT software to solve non-
linear programming problems. This software can
solve large-scale non-linear programming
problems with high accuracy and speed by using
the primal-dual interior-point method.

combined

Implementation of the online

method:

As we know, classical methods of solving
trajectory optimization and optimal control
problems lead to open-loop solutions. The optimal
solutions obtained from these methods are
obtained only on the basis of the existing
mathematical model and specified and
predetermined boundary conditions. Therefore,
due to model uncertainties and perturbations, the
application of  optimal controls and
implementation of optimal trajectories in practice
will not lead to the satisfaction of boundary
conditions and constraints.

In order to achieve a closed-loop solution for
trajectory optimization problems, it is necessary to
perform the trajectory optimization process online
during the mission to take into account the
instantaneous conditions of the vehicle and the
mission. Due to the instantaneous changes of the
state variables, it is necessary to perform the
process of optimizing the trajectory online in an
instantaneous way, which is not possible. Solving
trajectory optimization problems is very time-
consuming due to their many complexities. If the
time to solve these problems can be reduced as
much as possible, the instantaneous trajectory
optimization can be achieved to some extent. In
this case, the trajectory optimization problem is
defined based on the instantaneous conditions of
the vehicle and is solved in the shortest time, and
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control commands are applied. In accordance with
the new conditions of the vehicle, the problem of
optimizing the next trajectory is defined, and this
cycle is followed until the final conditions of the
mission are reached. Accordingly, the online
trajectory optimization process takes place in the
form of a control loop in which the trajectory
optimizer acts as a non-linear controller. In this
loop, system outputs are fed back to the controller
at specified time intervals. Figure 5 shows a block
diagram of this control method.

——

Dynamic
System

\ 4

Trajectory | Y
Optimization

v
v

Figure 5- Block diagram of the new method

Online trajectory optimization in the form of a
closed-control loop can be considered a new
control method in which control is based on
trajectory optimization. This control mechanism is
similar to what is done in the model predictive
control approach. In predictive control, first, an
open-loop trajectory is obtained by solving a
constrained optimal control problem in a definite
and limited horizon of time, and the initial
conditions of which are considered in accordance
with the instantaneous conditions of the state
variables. Then, the calculated optimal controls are
applied to the dynamic system in a small part of
the mentioned time horizon. By repeating this
process, a control loop is created. In fact, this
closed-loop control is obtained by calculating the
optimal trajectories from the instantaneous

conditions of the state variables [1 5] . Today, this
method is more commonly known as receding
horizon control. Because in it, optimal control
commands are obtained for future time horizons.
The term receding horizon control is a more
accurate expression of the performance of this
control method than the model predictive control.
Receding horizon control has a successful function
in controlling industrial processes. Of course, this
success has been due to the relatively slow
dynamics of industrial processes. Receding
horizon control algorithms requires a lot of
computation and, if implemented improperly, will
lead to divergence or poor stability. These
problems have led to the avoidance of using this
control method in non-linear systems with fast
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dynamics. Today, with the development and
expansion of inexpensive yet powerful computing
tools, as well as a better understanding of the
stability ~characteristics of receding horizon
control, this control method has been revived. The
use of receding horizon control to control
aerospace has been suggested and analyzed by
some researchers [16]. Using the receding horizon
control in the field of aerospace has many
advantages. The most important of which is the
ability of this control method to consider the state
and control constraints. In this method, control
commands are determined by considering the
constraints and limitations of the problem. Another
valuable feature of this method is the possibility of
changing the structure of the trajectory
optimization problem at any time, which creates
extraordinary mission flexibility for aerospace
vehicles. In this method, due to solving the
trajectory optimization problem in short intervals,
it is possible to change the objective functions and
constraints each time the problem is solved. That
is, each issue can be defined in accordance with the
conditions of the vehicle and the mission, with a
new structure. For example, in the middle of
guiding a missile to intercept a target, we can
change the mission and direct the missile to
another target. In this method, the dynamic model
used to determine the optimal trajectory can be
changed for different parts of the mission. Various
approaches have been proposed to implement
receding horizon control and create control loops
based on the methods for solving trajectory
optimization  problems. Based on these
approaches, the effect of instantaneous and final
conditions and time horizons of application of
control commands is determined. The approach we
use in this paper is as follows:

In this approach, after setting up the control loop,
the trajectory optimization problem is solved
online for a specific and limited time horizon #oizon
using the instantaneous state of the state variables.
If we assume that the time to calculate the optimal
trajectory in this approach is equal to fumpe, We
apply the optimal control of the calculated
trajectory to the system in the next fyumpe. At the
same time (in the second fwmp), We calculate a
new optimal trajectory based on the instantaneous
state of the vehicle and apply the optimal control
of the calculated trajectory in the third #mpie to the
system. By continuing this process until the end of
the mission, the vehicle has been able to carry out
its mission using the optimally calculated
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trajectory online. In Figure 6, this approach is
shown schematically. It should be noted that by
applying the calculated optimal controls, the
expected optimal trajectories will not necessarily
be traversed because due to various factors such as
model uncertainties, perturbations, random
factors, and anything that is not accurately
modeled in trajectory optimization, the trajectory
taken will be different from the expected
trajectory. Therefore, when calculating the new
optimal trajectory, the expected conditions are not
used, and the actual conditions of the vehicle are
used. As shown in Figure 6, when applying the
optimal control commands, only the part of the
calculated control commands that is relevant to the
next time period fmpre is applied. This causes the
computational delays to have the least impact on
the control process and the optimal control
commands to be applied only at their respective
time intervals.

input &
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Figure 6- Illustration of a timing scheme

In the implementation of receding horizon control,
the value of tnri-on is determined in accordance
with the dynamic nature of the mission and the
vehicle. The value of umpie, is determined based on
the time of solving the trajectory optimization
problem. This time can be considered as both fixed
and variable. In the variable case, whenever the
optimal trajectory calculation is completed, the
optimal control is applied, and the new optimal
trajectory calculation is started based on the
instantaneous  conditions of the vehicle.
Obviously, the value of #oizo, must be much higher
than fmpe in order to implement the optimal
trajectory more accurately. Also, the fyumpe must be
small enough for the system time constant to be
able to optimize the trajectory based on
instantaneous conditions.
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Simulation and numerical solution

In this section, we want to present a numerical
example of the application of the proposed
guidance law and present the results of the relevant
simulation. In this simulation, the objective
function is to minimize the time (maximize the
collision velocity).

In this section, in addition to applying the
combined guidance law, we apply the PPN and
TPN guidance laws as two examples of optimal
classical laws on the problem to allow the
comparison of the proposed method with the
classical optimal methods.

In order to implement the laws of guidance, we
consider the minimum height required to carry out
guidance instructions to be 40 km. Because at
altitudes above this value, the steering commands
are not able to change the direction of movement
of the vehicle due to the thin atmosphere. In the
simulation process, due to the use of random
variables with normal distribution, it is necessary
to apply Monte Carlo analysis for an acceptable
number of runs. Therefore, in this section, 100
different runs have been performed for each
analysis.

For analyzing the solutions, we calculate the three
standard deviations (30) of range error, the mean
final velocity, and the angle of attack Root Mean
Square (RMS).

If we consider uncertainties for the initial
conditions and some of the model parameters, the
vehicle impacts different points. Figure 7 shows
the trajectories for 100 runs without applying
guidance methods and control commands. For this
simulation, 3o of range error is 12,258 m, and the
mean final velocity is 822 m/s.

H (k)

Figure 7- Simulation without control
Table 1 presents the simulation results for 100 runs
with the classical PPN and TPN guidance laws and
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the proposed new method. Also, in Figures 8 to 10,
an example of the generated commands by each of
the three guidance methods is shown.

Table 1 - Comparison of three methods in the
presence of model uncertainties

Method 30 Rar(xl%]e) Error M(m )Vf Mea(l:! ggl){MS
PPN 1.21 763.70 1.71
TPN .27 761.63 1.74
New 5.69 952.14 1.36

As can be seen, all three guidance methods have
resulted in an acceptable collision error. However,
the new guidance law has been able to increase the
velocity of the collision significantly, and at the
same time, it has been done with less control effort.
In the new guidance law, the manner of changing
control commands, unlike the other two laws, is
smooth and non-fluctuating. PPN and TPN laws,
because they are unable to take into account
command constraints, lead to saturation in
controls. In this case, the output command is more
than the amount of control applied to the vehicle,
and the vehicle does not fully follow the guidance
command due to saturation. While in the new
guidance law (combined method), it is possible to
define the limitations of control commands, and
the guidance law optimizes commands based on
these limitations.

Another point is that the optimality of the classical
guidance laws is based on very simple kinematic
modeling, and the purpose of such guidance laws
is simply to reduce the collision error. However, in
the new guidance law, the objective function was
to minimize the time (maximize collision
velocity), the effect of which is clearly visible in
Table 1.

The new guidance law works in such a way that
the vehicle approaches the target in the shortest
time, and the rate of deceleration is minimal to
maximize the impact velocity with the target.
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Figure 8 - Generated guidance commands by PPN
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Figure 10 - Generated guidance commands by the new
guidance law

Conclusion

A new guidance law based on online trajectory
optimization was proposed in the present paper.
By using a combined method, this law can
generate guidance commands by the instantaneous
conditions of the vehicle and the target. This new
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method can show better performance than
conventional guidance laws. It can be used in
various applications due to its high flexibility in
defining dynamic models, objective functions, and
point and path constraints. In the proposed
guidance method, the vehicle's best performance
can be achieved with a minimum of control effort,
and the maximum velocity of hitting the target can
be achieved by producing smooth and low-
fluctuating guidance commands.
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